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Room-temperature absorption by PH3–H2 mixtures in the 2 and 4 bands of phosphine (PH3) has been 
measured for low pressures. Fits of these spectra are made to determine the width of isolated lines and line 
mixing in a first-order Rosenkranz approximation. From the previous determinations, we deduce remarks on 
the lack of accuracy of predicting the collisional process. With the first-order Rosenkranz approximation, 
the collisional parameters are considered linear with pressure. In this work, we have considered spectra 
recorded for three doublets: A1 and A2 lines in the 2 and 4 bands of PH3 diluted with higher H2 pressure. 
We show that the line shifts are non-linear with perturber pressures, which requires testing the fits of the 
recorded spectra with profiles developed in the second-order approximation of the perturbation theory. 
Consequently, the first- and second-order mixing coefficients are determined and discussed. Throughout this 
study, we also show that the change in the intensity distribution is provided by the population exchange be-
tween low energy levels for the two components of doublets A1 and A2 lines and is described through the 
second-order mixing parameter. Thereby, we show the mixing effect on line width. 
 Keywords: first-order Rosenkranz approximation, second-order approximation, perturbation theory.  
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Поглощение при комнатной температуре смесями PH3–H2 в полосах 2 и 4 фосфина (PH3) из-
мерено для низких давлений. Подбор спектров выполняется для определения ширины изолированных 
линий и смешивания линий в приближении Розенкранца первого порядка. В приближении Розенкранца 
первого порядка параметры столкновения считаются линейными с давлением. Зарегистрированы 
спектры для трех дублетов: линии A1 и A2 в полосах 2 и 4 PH3, разбавленного H2 более высокого 
давления. Показано, что сдвиги линий не линейны в зависимости от возмущающего давления. Это 
требует проверки соответствия записанных спектров профилям, полученным во втором порядке 
теории возмущений. Определяются и обсуждаются коэффициенты смешивания первого и второго 
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порядка. Показано, что изменение распределения интенсивности обеспечивается обменом населен-
ностью между низкими энергетическими уровнями для компонентов дублетов A1 и A2 и описывает-
ся с помощью параметра смешения второго порядка. Таким образом смешивание влияет на ширину 
линии. 

Ключевые слова: приближение Розенкранца первого порядка, приближение второго порядка, 
теория возмущений. 
 

Introduction. Phosphine is a molecule observed in the atmosphere of Jupiter and Saturn [1–4] and is 
composed mainly of hydrogen and helium. In addition, the study of its broadened spectra by H2 pressure can 
be useful in modeling planetary atmospheres. Therefore, it is of astrophysical interest. Moreover, the study 
of their overlapping lines can provide information on the collisional dynamics of this molecule as well as on 
the radiative transfer between relative transitions, which are of fundamental interest. 

To model a rovibrational spectrum, different procedures and approximations have been established to 
adjust the spectral lines of some molecules in the infrared (IR) region. In the framework of isolated line ap-
proximation, the absorption lines of the 2 and 4 bands of phosphine (PH3), recorded using a diode-laser 
spectrometer, are fitted with the Voigt, Rautian, and speed-dependent Rautian profiles [5–10]. In the frame-
work of a first-order Rosenkranz approximation, some experimental spectra of the same 2 and 4 bands of 
PH3 diluted with hydrogen (H2) at room and low temperatures were analyzed with non-linear least-squares 
multi-pressure fitting procedures based on the collisional Rosenkranz profile [11, 12]. In other works, the 
rovibrational spectra of other molecules, such as CH4, NH3, CH3Br, and C3H4, are fitted using the same pro-
cedures [13–16]. 

The collisional line width shows a linear regression with the perturber pressure. The same applies to the 
intensity parameter vs. the pressure of the active gas. Conversely, in some papers, the line shift shows a non-
linear variation with perturber pressure [14, 17, 18], which is inconsistent with the hypotheses of isolated 
lines and first-order Rosenkranz approximations. In fact, the reconstruction of collisional profiles is based on 
the diagonalization of the relaxation matrix as part of the impact approximation. A simple and well-known 
method of calculation is the perturbation theory used in the construction of the profiles previously men-
tioned. Smith [19] extended the first-order Rosenkranz approximation [20] to the second order in the frame-
work of perturbation theory. His work yields a collisional profile, considering the first- and second-order pa-
rameters of line mixing effects. In this same profile expression, the line shift vs. the perturber pressure has a 
parabolic form.  

We have used the collisional profile expression given by Smith to analyze some spectra of three dou-
blets A1 and A2 line recorded using a diode-laser spectrometer in the 2 and 4 bands of PH3 diluted with H2 
at higher pressure and room temperature. Then, we specified the collisional parameters to adjust. In addition, 
the reconstruction of the recorded spectra justifies the need to consider second-order mixing and shifting pa-
rameters. Consequently, the first- and second-order H2-line mixing coefficients in the 2 and 4 bands of PH3 
are presented and discussed. Through this study, we show the line mixing effect on the intensity distributions 
and line widths. 

Experimental analysis. Experimental conditions. The absorption spectra of the PH3-H2 mixture in the 
2 and 4 bands of phosphine were recorded at high resolution using a tunable diode-laser spectrometer  
(Laser Analytics Model LS3). The experimental techniques are detailed in [21, 22]. In this work, we give the 
experimental conditions of the measurements, verifying our analytic procedure. 

The absorption path length of the IR radiation provided by the diode laser in the multipass white-type 
cell is fixed to 20.17 m. The phosphine sample is supplied by Union Carbide with a stated purity of 99.999%, 
and the hydrogen sample is supplied by Air Liquide with a stated purity of 99.99%. The gas pressure is 
measured by two Baratron MKS gauges with full-scale measurements of 1.2 and 120 mbar, with an accuracy 
of 5×10–4 and 2×10–2 mbar. All spectra are recorded at room temperature (297.2±1.5 K). Table 1 summarizes 
the data needed for the transitions studied in this work: wave numbers, pressure of PH3 (PPH3), Doppler half-
width (Dop), effective Doppler half-width (Deff), temperature T, and pressure of H2 (PH2). Moreover, Fig. 1 
shows an example of the recorded spectra of the doublet RR(4,3,A1) and RR(4,3,A2) lines of the 4 band of 
PH3 diluted with pressures of H2, where the transmittance is plotted vs. the point numbers. The relative cali-
bration of spectra is performed using a confocal etalon with an inter-fringe spacing of 0.007958 cm–1. The 
etalon fringe pattern provides a check of the laser mode’s quality for correcting the slightly nonlinear tuning 
of the diode laser. Furthermore, it aids in linearization of the spectra with a constant step of 0.000121 cm–1. 
All spectra are linearized using the cubic splines techniques [23]. 
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TABLE 1. Experimental Conditions of the Recorded Spectra 
 

Transition , cm–1 [24] PPH3, mbar Dop, 10–3 cm–1 Deff, 10–3 cm–1 T, K PH2, mbar 

2 band 
QR(8,3,A1) 1059.14042 0.0010 1.1248 1.1484 298.15 55.14, 65.88, 80.70, 102.29
QR(8,3,A2) 1059.14988   1.1473  PPH3 = 0.022 mbar 
QR(9,3,A1) 1065.05928 0.0009 1.1299 1.2220 297.65 59.13, 72.86, 86.15, 111.20
QR(9,3,A2) 1065.07558   1.2039  PPH3 = 0.021 mbar 

4 band 
RR(4,3,A1) 1174.62613 0.0009 1.2466 1.3454 297.75 70.71, 82.86, 100.77, 116.80
RR(4,3,A2) 1174.64546   1.3464  PPH3 = 0.029 mbar 

 
 

 
Fig. 1.  Recorded  spectra for the  A1A2 components  of the  RR(4,3)  doublet  transition in the 4 band of PH3 
diluted by H2. 1) Baseline recorded with an empty cell; 2) effective Doppler lines recorded at a low pressure 
of  pure  PH3   0.029  mbar;   3–6)  records  of  the  broadened   at  pressures   of  H2  70.71,  82.86,  100.77,  

and 116.80 mbar, respectively; 7) confocal etalon fringes pattern; 8) 0% transmission level. 
 
Profiles and fitting procedure. The spectra recorded using the diode-laser spectrometer allow the writ-

ing of the Beer–Lambert law: 
() = (1/l)ln[I0()/It()],                                                              (1) 

where () is the experimental absorbance per unit length at wavenumber σ in cm–1, l is the path length, and 
I0() and It() are the transmitted intensities measured with the cell under a vacuum and filled with the gas 
sample, respectively. To fit the recorded spectra, three physical effects must be considered: weak instrumen-
tal distortion and Doppler and collisional effects. The first is implicitly considered through the effective half-
width Deff obtained by fitting the effective Doppler line [25] (Table 1). The Voigt profile (VP) results from 
the convolution of the Doppler and collisional profiles, reflecting the latter two effects. The expression of 
this profile depends on the extension of the collisional profile to be considered. 

Consider the collisional profile proposed by Smith [19] and developed within the framework of the sec-
ond-order approximation of perturbation theory: 
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where the index k represents transitions in Liouville or “line” space, and Sk, k, and Yk are the coupled line 
strength, the collisional half-width, and the first-order line mixing coefficient, respectively. The wavenumber 
k = 0k – k, where 0k is the line center wavenumber and k is the line shift. In addition, gk is the second-
order line-mixing coefficient, and k is the second-order line-shift coefficient. We deduce the Voigt profile 
(VPI2) corresponding to this collisional profile as 
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where W(x,y) is the complex probability function expressed by [26]: 
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where x = (ln2)1/2( – k + P 2k)/Deff and y = (ln2)1/2k/Deff. 
It should be noted that the parameters k, P 2k, k, PYk, and P 2gk are related to the diagonal (Wkk) and 

off-diagonal (Wkk with k  k) elements of the collisional relaxation matrix (W) [19]. If the second-order pa-
rameters (k and gk) equal zero, then Eq. (3) reduces to the expression of the first-order Rosenkranz approx-
imation model (VPI1) [18, 27].  

To fit the observed spectra, we set the intensity parameter to the value deduced from the absolute line 
intensity [18]. Figure 2 shows an example of the fits for the A1 and A2 lines of the doublet RR(4,3) in the 4 
band of PH3 diluted with 100.77 mbar of H2 by the theoretical profiles VPI1 and VPI2. The (Obs-Calc) re-
siduals are multiplied by 5 and displaced vertically for visibility. The (Obs-Calc) residuals of VPI2 show a 
better reproduction of the observed lines than that given by VPI1, where the second-order line mixing pa-
rameter is not considered. The better reconstruction given by VPI2 mainly reflects the contribution of the 
second-order mixing parameter to the reproduction of the lines at the peak.  

 

Fig. 2. The  measured  profile  for  the  A1A2  components  of  the RR(4,3)  doublet  transition  in the  4  band  
of PH3 diluted by 100.77 mbars of H2 (solid lines), and fitted superposed theoretical profiles VPI2 and VPI1.  

The   deviations   from   the  fit (obs-calc)   residuals   from   VPI2   and  VPI1.  The  (obs-calc)   residuals  
are multiplied by 5 and displaced vertically for visibility. 

 
Results and discussion. Line intensities. Using the absolute line intensities S0 [18], the absorption path 

length l, and the constant partial pressure of PH3 (PPH3) in the gas mixtures, we have deduced the intensity 
parameter S for each studied transition. This parameter is fixed in the fit profiles used for all four recorded 
spectra broadened by four H2 pressures. Consequently, we can fit the first- and second-order line mixing pa-
rameters PY and P2g, respectively. This concept allows us to distinguish the proper line intensity from the 
rate of intensity transferred with the neighboring line during the overlap. 

Figure 3 gives qualitative examples showing the difference between the intensity distribution in two 
overlapping lines obtained in this work, S(1 + P2g); the line intensities are presented with their errors (S  S) 
deduced from the results of [18]. These examples are presented for the A1 and A2 lines of the doublets 
QR(8,3) in the 2 band and RR(4,3) in the 4 band of PH3 vs. the square of the pressure of hydrogen P2. We 
observe an almost linear variation of the intensity distribution between the two overlapping A1 and A2 lines 
vs P2. The slopes of the straight lines of these variations have opposite signs. Table 2 shows that the varia-
tion of the intensity distribution obtained by this work sometimes exceeds the measurement uncertainties of 
the line intensities. They also differ from Brown's measurements [28], and they can reach 6.68% in the case 
of the line QR(8,3,A1).  
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Fig. 3. Qualitative examples showing the difference between the intensity distribution in two overlapping 
lines: S(1+P2g) obtained in this work and the line intensities presented with their errors (SS) deduced from 
the results [18]. These examples are presented for the A1 and A2 lines of the doublets QR(8,3) in the 2 band 

and RR(4,3) in the 4 band of PH3 vs. the square of the pressure of hydrogen P2. 
 

TABLE 2. Measured Line Intensities for the A1A2 Components of the Doublets Transition  
in the ν2 and ν4 Bands of PH3 with their Estimated Errors 

 

Transition , cm–1 [23] Line Intensity, 10–3 cm–1 Diff, % 
 (SS) [18] S [28] S(1+P2g) this work  

2 band 
QR(8,3,A1) 1059.14042 21.656 ± 0.433 21.678 22.31123.127 2.92–6.68 
QR(8,3,A2) 1059.14988 21.831 ± 0.438 21.590 21.06420.471 2.43–5.18 
QR(9,3,A1) 1065.05928 16.570 ± 0.330 16.470 16.53516.667 0.39–1.20 
QR(9,3,A2) 1065.07558 16.483 ± 0.330 16.470 16.48816.280 0.11–1.15 

4 band 
RR(4,3,A1) 1174.62613 27.317 ± 0.548 27.317 [18] 27.70028.319 1.40–3.67 
RR(4,3,A2) 1174.64546 27.311 ± 0.548 27.363 27.17526.407 0.69–3.49 

 
Broadening coefficients and line mixing effects. Figure 4 shows a typical linear regression of the values 

of the collisional half-width measured at each of the four pressures of H2 for the RR(4,3) doublet A1 and A2 
lines of PH3. The collisional half-widths are measured using the VPI2 profile. The slopes of the straight lines 
correspond to the H2-broadening coefficients 0 (in 10–3 cm–1atm–1). Here, we have systematically considered 
the small self-broadening contributions (represented by a point close to the origin) derived from the self-
broadening coefficients calculated using the theoretical model detailed [6] and from the constant partial pres-
sure of PH3 in the gas mixtures. The measurements of 0 was presented in Table 3 with their errors given by 
the standard deviation derived from the linear least-squares fit. The average values of the broadening coeffi-
cients of the A1 and A2 lines are in good agreement with those obtained in [18], where the second-order mix-
ing parameter is neglected. However, any appreciable difference between the coefficients of each line is 
shown as a percentage in Table 3. This behavior reflects the line mixing effect on the line widths, and it is 
shown by considering the second-order mixing term given by Smith's development. In the same branch, the 
line mixing effect on the width decreases with the rotational quantum number J, i.e., when the difference 
wavenumber  increases (Table 3).  

Line shifting parameters. Figure 5 depicts a typical plot of the line shift  derived from the VPI2 profile 
versus the H2 pressure P for the RR(4,3,A1) and RR(4,3,A2) lines in the 4 band of PH3. The point close to the 
origin represents the self-shifting contribution (self). The measured values show a quadratic dependence on 
pressure, which agrees with the theoretical analyses given by the development of Smith’s second-order per- 
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Fig. 4. The linear regression of the collisional width  for the RR(4,3) doublet A1 and A2 lines  
in the 4 band of PH3, derived from the fit of VPI2 (▪). The point close to the origin represents  

the self-broadening contribution. 
 

TABLE 3. Measured H2-Broadening Coefficients for the A1A2 Components of the Doublets Transition  
in the ν2 and ν4 Bands of PH3 with Their Estimated Errors 

 

Transition , cm–1 

[23] 
,  
cm–1 

0, 10–3 cm–1atm–1 0/0Av,  
% 

 [18] 
VPI2 0Av

2 band 
QR(8,3,A1) 1059.14042 0.00946 102.27 (1.07) 100.5 (2.6) 3.48 98.01 (0.76)
QR(8,3,A2) 1059.14988  98.77 (0.58)   97.25 (0.55) 
QR(9,3,A1) 1065.05928 0.01630 96.34 (1.13) 96.5 (1.1) 0.34 97.31 (0.16)
QR(9,3,A2) 1065.07558  96.67 (0.71) 97.20 (0.53)

4 band 
RR(4,3,A1) 1174.62613 0.01933 109.97 (0.96) 106.8 (4.8) 5.85 107.15 (0.24)
RR(4,3,A2) 1174.64546  103.72 (2.31)   106.83 (0.50) 

    N o t e.  = |(A1) – (A2)|, 0Av = [0(A1) + 0(A2)]/2, 0 = |0(A1) – 0(A2)|. 
 

turbation theory [19]. Consequently, from the unconstrained second-order polynomial least-squares proce-
dures, we deduce the first-and second-order coefficients of the curves, which are the first-order 0 and sec-
ond-order  H2-shift coefficients, respectively. Indeed, the line-shift parameter for each line k is expressed 
in the framework of the development of the second-order perturbation theory as 

2
0k self k kP P       ,                                                              (5) 

where the first-order coefficient 0k is related to the imaginary part of the diagonal (Wkk) elements of the col-
lisional relaxation matrix (W), and the second-order coefficient k is related to their off-diagonal elements 
(Wkk with k  k) by [19]: 

' '

' 0 ' 0

kk k k
k

k k k k

W W


 

  
 .                                                                 (6) 

We only present the qualitative behavior of the line-shift parameter with the perturber pressure. This behav-
ior agrees with the hypothesis of second-order Smith’s development. 

First-order line mixing parameter. Figure 6 depicts two examples of the variation of the fitted first-
order line mixing parameter (PY) by VPI2, with H2 pressure P for the A1 and A2 lines of the RR(4,3) doublet 
in the 4 band of PH3. The first-order H2-line mixing coefficients Y are deduced from the slope of the straight 
lines resulting from unconstrained linear least-squares procedures. These values obtained with their errors, 
given by the standard deviation on Y derived from the linear least-squares fit, are presented in Table 4.  
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Fig. 5. The pressure dependence of the line shifts  for the RR(4,3) doublet A1 and A2 lines in the 4 band of 
PH3, derived from the fit of VPI2 (▪). The point close to the origin represents the self-shifting contribution. 
The best fit curves represent the second-order polynomial functions whose first- and second-order coeffici-

ents are, respectively, the first- and second-order H2-shifting coefficients for each transition. 
 

Fig. 6.  The pressure dependence   of the   first-order mixing parameter PY for the A1A2  components of the 
RR(4,3) doublet transition in the 4 band of PH3, derived from the fit of VPI2 (▪).  The slopes of the best-fit 

lines represent the first-order H2-line mixing coefficients for each transition. 
 

TABLE 4. First and Second-Order H2-Line Mixing Coefficients for the A1A2 Components  
of the Doublets Transition in the ν2 and ν4 Bands of PH3 with Their Estimated Errors 

 

Transition , cm–1 [23] , cm–1 Y, 10–3 atm–1 g, 10–3 atm–2 

 VPI2 [18] * VPI2 
2 band

QR(8,3,A1) 1059.14042 0.00946 –1.77 (0.16) –3.23 (0.40)  3.28 (1.74) 
QR(8,3,A2) 1059.14988   1.71 (0.27) 3.31 (0.56) –3.30 (1.05) 
QR(9,3,A1) 1065.05928 0.01630 –1.32 (0.04) –1.47 (0.59)  0.93 (0.15) 
QR(9,3,A2) 1065.07558  0.92 (0.44) 0.86 (0.27) –1.45 (0.30) 

4 band 
RR(4,3,A1) 1174.62613 0.01933 –1.12 (0.23) –0.92 (0.22)  2.65 (0.27) 
RR(4,3,A2) 1174.64546  0.74 (0.07) 0.76 (0.43) –2.09 (0.95) 

N o t e.  = |(A1) – (A2)|. 
* These values correspond to the average of the measurements obtained with the two models  
(VP with mixing and SDRP with mixing). 
 
For the components A1 and A2 of the doublet lines, the first-order mixing coefficients are opposite. Ex-

cept for the mixing coefficients of QR(8,3) doublet lines, where it is underestimated, the results presented in 
this work satisfactorily agree with those given in [18]. In the QR branch, the first-order mixing coefficients 
show a decrease in absolute value with the rotational quantum number J, that is, when the difference wave-
number  increases (Table 4). The line mixing (off-diagonal relaxation elements) coefficients (Wij) for the 
A1A2 pairs of transitions in the phosphine pentad are given by V. Malathy Devi et al. [29] are seen and com-
pared to ours. 

Second-order line mixing parameter. Two typical examples of the variation of the second-order line 
mixing parameter (P2g) deduced by fitting with the VPI2 profile vs. the square of the pressure of hydrogen 
P2 are shown in Fig. 7 for the RR(4,3) doublet A1 and A2 lines in the 4 band of PH3. The second-order  
H2-line mixing coefficients g are derived from the slope of the straight lines resulting from unconstrained 
linear least-squares procedures. Presented in Table 4, these values are obtained with their errors, given by the 
standard deviation on g derived from the linear least-squares fit. The measurement uncertainties are less than 
31.8% for the studied transitions, except for the QR(8,3,A1) and RR(4,3,A2) lines, which are in the range of 53 
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and 45%, respectively. For each doublet line A1 and A2, these second-order mixing coefficients are the oppo-
site, which reflects the rate of intensity exchange during the overlap due to the population transfer between 
low energy levels of the two transitions. With the pressure range considered in this work, the second-order 
mixing term becomes appreciable. Thereafter, it is measurable, while at lower pressures it is indistinguisha-
ble from the measured uncertainties of line intensities, such as the case of the spectra studied in [18]. Like 
the observed behavior of the first-order mixing parameter, the latter shows a decrease with the rotational 
quantum number J in the 2 band as the difference wavenumber  increases (Table 4).  

 

 

Fig. 7.  Variation  of  the  second-order   mixing   parameter  P 2g   with  their  bar  error  vs.  the  square   
of the H2-pressure for the A1A2 components of the doublets transition QR(8,3) in the 2 band and RR(4,3)  
in  the  4  band  of  PH3,  derived  from  the  fit  of  VPI2 (▪).  The slopes  of the  best-fit lines represent  

the second-order H2-line mixing coefficients for each transition. 
 

Conclusions. This work presents reasonable first-and second-order mixing coefficients within the 
framework of the second-order approximation of perturbation theory for some lines in the 2 and 4 bands of 
PH3 perturbed by H2 at room temperature. To achieve these results, we used the spectra recorded at pressures 
ranging from 55 to 117 mbar using a diode laser spectrometer. We also have considered the collisional pro-
file proposed by Smith [19] and developed within the framework of the second-order perturbation theory. 
This allows us to deduce the VPI2 profile by convolution with the Doppler profile. 

The obtained shifting parameter shows a parabolic variation with the perturber pressure, which is justi-
fied by the second-order approximation used. We have set the intensity parameter in the fit profiles; this al-
lows us to distinguish between the appropriate line intensity and the intensity rate exchanged with the neigh-
boring line during the overlap. Consequently, we have shown that the second-order mixing parameter is ap-
preciable and measurable. Indeed, it expresses the rate of intensity transferred between the overlapping lines 
A1 and A2 of each doublet. During this work, we have demonstrated the line mixing effect on the line widths, 
which allows us to better understand the collisional dynamics of the molecules. 
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