май — июнь 2021

MAY — JUNE 2021

V. 88, N 3

JOURNAL OF APPLIED SPECTROSCOPY

СИНТЕЗ И СПЕКТРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ ОКСИДОВ Si, Ti, Mg, Zn, МОДИФИЦИРОВАННЫХ *L*-ПРОЛИНОМ

О. В. Корякова¹, М. С. Валова^{1*}, Ю. А. Титова¹, А. Н. Мурашкевич², О. В. Федорова¹

УДК 544.723.5+542.8

 ¹ Институт органического синтеза им. И. Я. Постовского Уральского отделения РАН, 620990, Екатеринбург, Россия; e-mail: vms@ios.uran.ru
 ² Белорусский государственный технологический университет, 220006, Минск, Беларусь

(Поступила 3 марта 2020)

Получены индивидуальные и смешанные оксиды Zn, Mg, Si, Ti, модифицированные L-пролином в процессе золь-гель синтеза. Детально исследованы ИК-спектры, в которых наблюдаются изменения параметров полос колебаний связей кремний–кислород, металл–кислород. Для оксида SiO₂–TiO₂ характерно увеличение количества основных центров после удаления L-пролина с поверхности. Композит SiO₂–Mg(OH)₂*L-пролин повышает значения энантиомерного избытка в асимметрической реакции Биджинелли до 18 %.

Ключевые слова: золь-гель синтез; ИК-спектроскопия; оксиды кремния, цинка, магния, титана; композиты с L-пролином; сорбция; катализаторы; реакция Биджинелли; активные центры.

Individual and mixed oxides of Zn, Mg, Si, Ti, modified with L-proline in the process of sol-gel synthesis, has been obtained. The IR spectra, in which changes in the parameters of vibration bands of the siliconoxygen and metal-oxygen bonds are observed after the removal of L-proline, have been studied in detail. The SiO_2 -TiO₂ oxide is characterized by an increase in the number of basic centers after the removal of L-proline from the surface. The SiO_2 -Mg(OH)₂*L-proline composite increases the values of enantiomeric excess of asymmetric Biginelli reaction product up to 18%.

Keywords: sol-gel synthesis; IR spectroscopy; oxides of silicon, zinc, magnesium, titanium; composites with L-proline; sorption; catalysts; Biginelli reaction; active centers.

Введение. Оксиды металлов широко применяются в качестве катализаторов органического синтеза как в промышленности, так и в лабораторной практике [1]. Природа каталитически активных центров поверхности оксидных катализаторов подробно изучена (см., например, [2—6]). Известно, что каталитическая активность гетерогенного катализатора (увеличение скорости реакции, селективность, выход целевого продукта) зависит от количества и природы активных центров, участвующих в каталитическом процессе [4]. Использование ИК-спектроскопии для изучения гетерогенных катализаторов позволяет получить информацию о наличии и природе активных центров на поверхности неорганического оксида, о межмолекулярных и химических взаимодействиях органических молекул с катализатором, а также высказать предположения о механизме их каталитического действия [7, 8].

В настоящей работе исследуются оксиды металлов и кремния в качестве катализаторов реакции Биджинелли [7, 9]:

SYNTHESIS AND SPECTROSCOPIC STUDY OF Si, Ti, Mg, Zn OXIDES MODIFIED BY L-PROLINE O. V. Koryakova¹, M. S. Valova^{1*}, Yu. A. Titova¹, A. N. Murashkevich², O. V. Fedorova¹ (¹ Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990, Russia; e-mail: vms@ios.uran.ru; ² Belarusian State Technological University, Minsk, Belarus) приводящей к образованию 1,4-дигидропиримидинов (ДГПМ), обладающих кардиотропной, гипотензивной, противоопухолевой, противовирусной активностью [10]:

Традиционно ДГПМ получаются в виде смеси (S)- и (R)-энантиомеров в соотношении 1:1 (неасимметрическая реакция Биджинелли), которые могут существенно различаться фармакологической активностью. Например, (R)-энантиомер соединения SQ 32926 проявляет в 400 раз большую гипотензивную активность по сравнению с (S)-энантиомером [11]. Ингибирующая активность в отношении mitotic kinesin Eg5 (S)-монастрола в 15 раз выше активности (R)-монастрола [12].

Поиск новых подходов к синтезу энантиомерно чистых ДГПМ или обогащенных одним из энантиомеров (асимметрическая реакция Биджинелли) является актуальной задачей, для решения которой используются различные классы хиральных индукторов [13].

L-Пролин — важная аминокислота, широко применяемая для повышения стереоселективности органических реакций, в том числе асимметрической реакции Биджинелли [14—16]. В работе [7] показано положительное влияние индивидуальных оксидов Zn, Mg и Ti на стереокаталитическую активность *L*-пролина в асимметрической реакции Биджинелли. На хемоселективность реакции Биджинелли положительно влияет (катализирует неасимметрическую реакцию) *L*-пролин [17, 18], *L*-пролинат цинка [19], а также сульфат *L*-пролина, сорбированный на поверхность силикагеля [20].

Иммобилизация *L*-пролина на неорганических носителях, в том числе мезопористых материалах, исследована в [21, 22]. Путем сорбции *L*-пролина на анионные глины получен эффективный гетерогенный катализатор асимметрической альдольной конденсации [23]. Об использовании *L*-пролина, сорбированного на синтетические неорганические оксиды, в асимметрических реакциях не сообщалось. Композиты на основе *L*-пролина и неорганических оксидов, полученные в процессе золь-гель синтеза, не описаны в литературе. В то же время известно, что количество активных центров основной и кислотной природы оксидного катализатора может возрастать при увеличении площади его поверхности либо за счет модификации поверхности. Например, в [6] описано изменение кислотности поверхности оксидов путем их фторирования или сульфатирования. Влияние аминокислот, нанесенных на поверхность оксидов, на количество и характер активных центров не исследовано.

Цель настоящей работы — синтез индивидуальных и смешанных оксидов Zn, Mg, Si, Ti, модифицированных *L*-пролином в процессе золь-гель синтеза, детальное изучение их методом ИК-спектроскопии, в частности, выявление изменений спектральных характеристик связей оксидов и *L*-пролина в композитах до и после удаления *L*-пролина, исследование влияния *L*-пролина на количество основных активных центров, а также изучение полученных композитов в качестве катализаторов асимметрической реакции Биджинелли.

Эксперимент. Синтез ZnO (образец 1). Нумерация и характеристики образцов приведены в табл. 1. К водному раствору гидроксида натрия (560 мл, C = 0.43 М) по каплям добавлен раствор нитрата цинка (132 мл, 0.45 М). Раствор гидроксида натрия взят в двукратном мольном избытке. Суспензию перемешивали, сформировавшийся осадок гидроксида цинка выдерживали в маточном растворе в течение 1 сут, затем фильтровали и промывали дистиллированной водой (0.7 л). Полученный осадок в автоклаве нагревали до 120 °C со скоростью 5 °C/мин, выдерживали в течение 1 ч и быстро охлаждали до комнатной температуры. В результате получали порошок кристаллического оксида цинка (образец 1) со структурой цинкита с размером кристаллитов 20—40 нм, что хорошо согласуется с оценкой размеров частиц по удельной поверхности [24].

Обра-	Состав	S _{уд} , м²/г	<i>n</i> _c , ммоль-экв/г	Содержание <i>L</i> -пролина, %	Данные элементного анализа (CHN), %			
эец					С	Н	N	MeO _x
1	ZnO	46	0.269	0.0	0.44	0.42	нет	96.93
2	ZnO* <i>L</i> -пролин, непромытый	—	0.252	51.4	30.95	4.02	7.16	42.87
3	ZnO* <i>L</i> -пролин, промытый	40	0.152	0.0	0.53	нет	нет	98.34
4	MgO	394		0.0	4.12	2.77	нет	64.57
5	SiO ₂ -MgO (50:50)	367	0.218	0.0	1.36	2.45	нет	77.51
6	SiO ₂ -Mg(OH) ₂ (50:50)* <i>L</i> -про-	—	0.363	46.2	24.09	5.25	5.65	44.07
7	SiO ₂ –Mg(OH) ₂ (50:50)* <i>L</i> -про- лин, промытый	261	0.734	0.0	0.63	2.33	нет	80.14
8	SiO ₂ -TiO ₂ (82:18)	271	0.072	0.0	0.61	1.30	нет	82.85
9	SiO ₂ -TiO ₂ (82:18)* <i>L</i> -пролин,	—	0.297	36.6	19.12	3.64	4.76	58.06
10	непромытый SiO ₂ –TiO ₂ (82:18)* <i>L</i> -пролин,	282	0.565	1.4	0.71	1.75	1.05	84.09
	промытыи							

Таблица 1. Состав композитов, их удельная поверхность и количество основных активных центров (*n*_c)

Синтез MgO и SiO₂–MgO (образцы 4 и 5). Гидроксид магния осаждали 24 %-ным раствором аммиака из раствора сульфата магния и выдерживали при комнатной температуре, фильтровали и отмывали от сульфат-ионов. Затем продукт подвергали термообработке при 400 °C в течение 1 ч, в результате получали кристаллический порошок оксида магния с пластинчатой формой частиц (образец 4) [25]. Для получения SiO₂–MgO (образец 5) первоначально получали золь диоксида кремния: карбонат кальция помещали в стакан и заливали водой, перемешивали 10 мин, добавляя по каплям с помощью делительной воронки H_2SiF_6 при pH 5.1—5.3. Центрифугированием разделяли твердую (CaF₂) и жидкую фазы (золь SiO₂). Отдельно осаждали гидроксид магния 24 %-ным раствором аммиака из раствора сульфата магния и выдерживали при комнатной температуре, фильтровали и отмывали от сульфат-ионов. Золь SiO₂ и гидроксид магния смешивали и прокаливали при 400 °C в течение 1 ч (образец 5). В продукте SiO₂–MgO установлено присутствие гидроксида магния в структуре брушита и нанокристаллического оксида магния.

Синтез SiO₂-TiO₂ (образец 8) проведен по известным методикам [26, 27].

Синтез композитов неорганический оксид*L-пролин (образцы 2, 6, 9) и композитов с отпечатком L-пролина (образцы 3, 7, 10). Синтез композитов с L-пролином осуществляли путем его добавления в процессе золь-гель синтеза оксидов при массовом соотношении оксид (индивидуальный или смешанный):L-пролин 1:1 аналогично [24]. Каждый образец делили на две части. Одну часть продукта сушили при 110 °C в течение 2 ч и получали композиты 2, 6, 9 (неорганический оксид*L-пролин, непромытый). Вторую половину тщательно промывали водой и сушили при 110 °C до постоянной массы, получали композиты неорганического оксида с отпечатком L-пролина (неорганический оксид*L-пролин, промытый, образцы 3, 7, 10). Раствор модификатора вводили на начальной стадии синтеза, затем полученный двойной оксид отфильтровывали, в результате часть органического модификатора уходила с фильтратом. В отличие от исходных оксидов (образцы 1, 4, 5, 8) полученные порошки композитов неорганический оксид*L-пролин (образцы 2, 3, 6, 7, 9, 10) — аморфные, поскольку не прокаливались.

Сорбция L-пролина на MgO и на SiO₂-MgO (образцы 4a, 5a). Для получения образцов 4a, 5a осуществляли сорбцию L-пролина из этанольного раствора при мольном соотношении сорбат:сорбент = 1:3 с последующим удалением растворителя при температуре 60—70 °C.

Методы исследования. Удельная поверхность образцов измерена адсорбционным методом из раствора в гептане с использованием фенола в качестве адсорбата [28]. Количество активных центров (*n*_c) определено методом титрования раствором гидроксида калия остатка бензойной кислоты (0.01 N раствор в циклогексане) после ее сорбции на поверхности образцов [29]. Композиты исследованы

методом ИК-спектроскопии диффузного отражения, так как при использовании этого метода наиболее четко проявляются колебания сорбированных на поверхности соединений. Спектры зарегистрированы на спектрометре Spectrum One (Perkin Elmer) в области 4000—370 см⁻¹ с помощью автоматической приставки. Массовые доли С, Н, N (%) определены с использованием автоматического CHNанализатора PE-2400 (серия II, Perkin Elmer). Динамический радиус и распределение частиц композитов по размерам в водном растворе найдены с помощью универсального анализатора Zeta Plus фирмы Brookhaven Instrument методом динамического рассеяния света, массовые доли кремния и титана — методом атомно-эмиссионной спектроскопии (АЭС) на оптическом эмиссионном спектрометре с индуктивно связанной плазмой iCAP6300 Duo (Thermo Scientific, США). Морфология образцов проанализирована методом сканирующей электронной микроскопии (СЭМ) на электронном микроскопе Merlin (Carl Zeiss, Германия).

Асимметрическую реакцию Биджинелли проводили в присутствии 10 мол. % хирального индуктора и(или) 10 мол.% оксидного катализатора. Энантиомерные избытки (enantiomeric excess, *ee*) определены методом высокоэффективной жидкостной хроматографии (YMC-Pack, Chiral-NEA-R, CH₃CN-H₂O, 35:65).

Результаты и их обсуждение. Данные элементного АЭС-анализа показывают, что фактическое соотношение SiO₂:TiO₂ близко к расчетному значению, при этом промывание композита от органической фазы (*L*-пролина) не сопровождается вымыванием неорганических компонентов. Так, для образца 9 содержание [SiO₂] = 41.2 %, [TiO₂] = 9.82 %, для образца 10 [SiO₂] = 63.6 % и [TiO₂] = 16.5 %.

Композиты SiO₂-TiO₂**L*-пролин (образцы 9, 10), по данным СЭМ, представляют собой аморфные порошки, состоящие из агрегатов неправильной формы со средними размерами 500—600 нм (9) и 250—350 нм (10). Агрегаты состоят из чешуек небольшого размера (~15—40 нм) (рис. 1).

Методом динамического рассеяния света определены динамические радиусы и распределение частиц композитов по размерам в водном растворе. Во всех образцах частицы находятся в виде агрегатов: ZnO^*L -пролин, непромытый (образец 2) — 2558 ± 276 нм, после промывания (образец 3) — 2240 ± 194 нм; SiO_2 -Mg(OH)₂*L-пролин, непромытый (образец 6) — 3176 ± 238 нм, после промывания (образец 7) — 1433 ± 46 нм; SiO_2 -TiO₂*L-пролин, непромытый (образец 9) — 339 ± 8 нм, после промывания (образец 10) — 557 ± 36 нм, что соответствует данным, полученным с использованием метода СЭМ (рис. 1).

Рис. 1. СЭМ-изображения частиц композитов 9 (a, δ) и 10 (e, c)

По данным элементного CHN-анализа рассчитано количество *L*-пролина в исследуемых образцах (табл. 1). Количество *L*-пролина в композитах, полученных в процессе золь-гель синтеза, уменьшается в ряду $ZnO >> SiO_2-Mg(OH)_2 > SiO_2-TiO_2$. При сорбции *L*-пролина на SiO_2-MgO (образец 5а) сорбируется менее 9 % *L*-пролина, что в пять раз меньше, чем в композите 6.

После промывания композитов водой *L*-пролин практически полностью удаляется из оксидов, за исключением SiO₂–TiO₂, на котором остается 1.4 % *L*-пролина, что можно объяснить наибольшей прочностью связывания *L*-пролина с оксидами титана и кремния (образцы 3, 7, 10).

Методом ИК-спектроскопии показано [7, 9], что катализ реакции Биджинелли (в том числе асимметрической) оксидами металлов или кремния обусловлен активацией органических соединений после их адсорбции на поверхности катализатора. При этом важную роль играют молекулы активированной воды и углекислого газа на поверхности оксида. В настоящей работе исследованы ИК-спектры композитов неорганический оксид**L*-пролин.

Рис. 2. ИК-спектры *L*-пролина (1) и образцов 2 (2), 3 (3) и 1 (4)

ИК-спектр диффузного отражения используемого *L*-пролина в интервале 400—2000 см⁻¹ практически не отличается от спектра поглощения твердого образца [30], приготовленного прессованием с КВг. К валентным колебаниям N–H-связей следует отнести полосу 3050 см⁻¹ и широкое поглощение с максимумами 2779, 2512 и 2396 см⁻¹, свидетельствующее о сильной водородной связи. Полосы поглощения 1616 и 1408 см⁻¹, а также 1562 и 1380 см⁻¹ характеризуют колебания СОО⁻ и NH₂⁺ соответственно. Это свидетельствует о нахождении молекулы в виде цвиттер-иона (рис. 2, кривая *I*) [30, 31].

Колебания Zn–O-связей в оксиде цинка (образец 1) проявляются в виде широкой полосы с максимумом вблизи 430 см⁻¹ и плечом при 550 см⁻¹ (рис. 2, кривая 4) [32, 33]. Кроме того, в ИК-спектре наблюдается ряд слабых, размытых полос в области 700—1200 см⁻¹, которые можно отнести к колебаниям связей Zn–O на поверхности, где катион Zn²⁺ является координационно не насыщенным (800—1200 см⁻¹) [4], к многофононным колебаниям решетки ZnO (700—1100 см⁻¹) [34] и деформационным колебаниям связей Zn–O–H поверхности (833—850 см⁻¹) [33]. О присутствии воды свидетельствуют полосы 3376 и 1630 см⁻¹. В спектре также наблюдается слабое поглощение с максимумом 1421 см⁻¹, соответствующее карбонат-ионам углекислого газа на поверхности оксида [3].

В спектре образца 2 максимум полосы колебаний Zn–O-связей снижается на 9 см⁻¹ по сравнению с чистым ZnO. Изменения полос *L*-пролина (рис. 2, кривые *1*, *2*) также указывают на сильное взаимодействие компонентов. Во-первых, в спектре композита 2 исчезает поглощение NH₂⁺ цвиттер-иона в областях 3050 и 2300—2600 см⁻¹ и появляется полоса валентных колебаний вторичной N–H-связи 3215 см⁻¹ [31]. Во-вторых, исчезает полоса деформационных колебаний NH₂⁺ (1562 см⁻¹). Полоса деформационных колебаний вторичной аминогруппы, образующейся в результате разрушения цвиттериона, имеет слабую интенсивность [35] и накладывается на полосу ионизированной карбоксильной группы 1597 см⁻¹ [36]. Эти данные подтверждают разрушение цвиттер-иона NH₂⁺ и образование комплекса аминокислоты с металлом. В результате можно предположить, что координация *L*-пролина в композитах (металл-O**L*-пролин, непромытый) представляет собой хелатоподобную структуру, аналогичную описанной для пролината меди Cu(*L*-пролин)₂ [30] и пролината цинка Zn(*L*-пролин)₂ [37]. После промывки в спектре композита ZnO**L*-пролин (образец 3) полосы *L*-пролина исчезают (кривая *3*), что свидетельствует о разрушении комплекса и вымывании *L*-пролина. Частота колебаний Zn–O-связей смещается ниже 400 см⁻¹, а вместо уступа появляется максимум при 550 см⁻¹. Смещение в области колебаний поверхностных связей Zn–O в низкочастотную сторону (с 912 на 875 см⁻¹) свидетельствует об изменении параметров связей Zn–O после удаления *L*-пролина и может быть следствием образования отпечатка молекулы *L*-пролина (образец 1).

В ИК-спектре оксида магния (рис. 3, кривая 3) наблюдаются широкое поглощение, соответствующее колебаниям Mg–O-связей, в области 500—680 см⁻¹, полосы поглощения воды (v-3392 см⁻¹ и δ -1642 см⁻¹) и широкие полосы с максимумами 1418 и 1091 см⁻¹, указывающие на образование на поверхности монодентатных карбонатных комплексов [36] вследствие сорбции углекислого газа. При сорбции *L*-пролина на оксид магния (образец 4а) полосы поглощения цвиттер-иона исчезают и на фоне полос карбонат-ионов и воды проявляются полосы аминогрупп при 3223 и 1596 см⁻¹ (кривая 4). Последняя сливается с полосой ионизированной карбоксильной группы, частота которой снижается, вероятно, за счет взаимодействия с металлом. В то же время максимум второй полосы этой группы 1380 см⁻¹ смещается в высокочастотную сторону. Таким образом, ИК-спектр продукта сорбции *L*пролина на MgO свидетельствует о том, что даже в мягких условиях происходит взаимодействие компонентов с образованием *L*-пролината магния аналогично композиту 2.

В спектре образца 5 (рис. 3, кривая 2) колебания Si–O-связей проявляются на 64 см⁻¹ ниже (1015 см⁻¹), чем в спектре нанооксида кремния (кривая *I*), описанного в [26]. Этот факт, а также отсутствие интенсивного поглощения в области 500—680 см⁻¹ связей Mg–O–Mg в оксиде магния можно считать доказательством образования связей Si–O–Mg, образующихся при обработке 400 °C. В спектре присутствуют полосы поглощения воды (v-3390 см⁻¹ и δ -1633 см⁻¹), интенсивности которых значительно меньше по сравнению с интенсивностью полос колебаний связей элемент—кислород в спектре MgO. Слабое поглощение с максимумом 1423 см⁻¹ свидетельствует о присутствии следовых количеств карбонатных групп [27] (кривая 2).

L-Пролин, сорбированный на сформированный при 400 °C композит SiO₂–MgO, имеет в ИКспектре образца 5а очень слабые полосы, что свидетельствует о значительно меньшем его количестве, чем в случае MgO. Полосы поглощения *L*-пролина 1616 и 1562 см⁻¹ (рис. 3, кривая 2) изменяют частоту и форму и накладываются на полосу деформационных колебаний воды (кривые 5, 7). Суперпозиция этих полос проявляется вблизи 1625 см⁻¹. Максимумы сложной полосы в области 1300— 1410 см⁻¹ смещаются в высокочастотную сторону до 1387 и 1421 см⁻¹. Полосы цвиттер-иона (2300— 2700 и 3050 см⁻¹) в спектре исследуемого образца отсутствуют, а полоса N–H-связей (3225 см⁻¹) не видна на фоне интенсивной полосы валентных колебаний O–H-связей, максимум которой несколько сдвинут в низкочастотную сторону (3378 см⁻¹) по сравнению с образцом 5 (кривая 2). Можно предположить, что сорбция *L*-пролина происходит преимущественно на катионе магния.

В ИК-спектре композита 6 появляются полосы валентных колебаний N–H-связей первичных аминогрупп, связанных водородной связью 3225 см^{-1} , а также смещаются и уменьшаются интенсивности полос v NH₂⁺ цвиттер-иона по сравнению с чистым *L*-пролином (3059, 2779 и 2396 см⁻¹). При этом полосы ионизированной карбоксильной группы и деформационных колебаний NH₂⁺ незначительно уширяются со смещением до 1611 и 1567 см⁻¹. Наряду с полосой связи Mg–O–Si, сдвинутой на ~20 см⁻¹ (1031 см⁻¹) в высокочастотную сторону (рис. 3, кривые 2, 6), обнаруживаются широкая полоса ~450 см⁻¹ с уступом при 570 см⁻¹, соответствующая колебаниям Mg–O в Mg(OH)₂ [38], а также узкая полоса свободных гидроксильных групп 3699 см⁻¹ Mg(OH)₂. Вероятно, наличие Mg(OH)₂ в образце 6 обусловлено отсутствием достаточной термообработки (400 °C) по сравнению с проведенной при получении композита 5 (SiO₂–MgO). В процессе сушки (110 °C) смеси Mg(OH)₂, SiO₂ и *L*-пролина частично образуется композит SiO₂–Mg(OH)₂**L*-пролин. Значительная часть *L*-пролина присутствует в фазе смешанного оксида и имеет искаженную структуру, о чем свидетельствует некоторое изменение его спектральных характеристик.

В ИК-спектре образца 7 максимум полосы поглощения Si–O-связей (1072 см⁻¹) соответствует максимуму полосы в чистом оксиде кремния [27] (рис. 3, кривая 8). В то же время видна четкая полоса поглощения валентных колебаний гидроксильных групп Mg(OH)₂ 3699 см⁻¹ [34, 35]. Спектральные признаки связи Mg–O–Si не обнаружены.

Таким образом, промывка смеси SiO₂, Mg(OH)₂ и *L*-пролина (образец 7) без соответствующей термообработки (110 °C) не сопровождается формированием композита SiO₂–MgO**L*-пролин. Композит SiO₂–Mg(OH)₂**L*-пролин формируется только в процессе сушки смеси Mg(OH)₂, SiO₂ и *L*-пролина, при этом в координации карбоксильных и NH-групп *L*-пролина участвует связь Mg–O и формируется структура, аналогичная композиту ZnO**L*-пролин. Для смешанного оксида SiO₂–TiO₂ (образец 8) положение максимумов полос поглощения Si–O–Si- и Si–O–Ti-связей в ИК-спектре, а также удельная поверхность практически совпадают с описанными в [27].

Рис. 3. ИК-спектры SiO₂ (1), образцов 5 (2), 4 (3), 6 (6), 7 (8), *L*-пролина (5); сорбция *L*-пролина на MgO (образец 4a) (4) и на SiO₂–MgO (образец 5a) (7)

Согласно данным элементного анализа, в образце 9 содержится 36.6 % *L*-пролина (табл. 1), при этом форма и частота полос *L*-пролина значительно изменяются (рис. 4, кривая 2). Полосы ионизированной карбоксильной группы (1616 см⁻¹) и цвиттер-иона (1564 см⁻¹) накладываются на полосы воды и проявляются в виде широкой, сложной полосы с максимумом при 1625 см⁻¹. Особенно заметны изменения в области 1300—1450 см⁻¹: частоты максимумов сложной полосы изменяются и проявляется полоса 1411 см⁻¹. При этом изменяются площадь под кривой и максимум полосы колебаний О–Н-связей (3190 см⁻¹) и появляется слабая полоса свободных групп Si–O–H (3705 см⁻¹). Частота колебаний Si–O–Ti-связей (960 см⁻¹) смещается в низкочастотную сторону до 951 см⁻¹, связей Si–O–Si — в высокочастотную (с 1065 до 1081 см⁻¹). Это дает основание предполагать разрушение цвиттер-иона и образование координационной связи *L*-пролина преимущественно с атомами титана в композите.

Рис. 4. ИК-спектры *L*-пролина (1), образцов 9 (2), 10 (3) и 8 (4)

После промывки в образце 10 комплекс частично остается, о чем свидетельствуют форма и более высокая интенсивность полосы 1441 см⁻¹ относительно полос воды и Si–O-связей (рис. 4, кривые 3, 4). Наличие остаточного *L*-пролина в образце 10 подтверждается данными элементного анализа (табл. 1).

Таким образом, модификация молекулами *L*-пролина оксидов в процессе их золь-гель синтеза сопровождается заметными изменениями спектральных характеристик связей кислород-металл, которые сохраняются после удаления *L*-пролина с поверхности, что может быть связано с формированием отпечатка молекулы *L*-пролина.

Количество активных центров в композитах оксид*L-пролин и их удельная поверхность приведены в табл. 1. Показано, что модифицирование всех оксидов молекулами L-пролина практически не влияет на удельную поверхность композита, но приводит к увеличению количества активных центров основной природы в композитах, за исключением ZnO. Для композита SiO₂–TiO₂*L-пролин обнаружен рост количества основных активных центров более чем в три раза после удаления L-пролина путем промывки (образцы 8, 10). Это, по-видимому, бренстедовские основные центры, представленные атомами кислорода оксидов.

Таким образом, показана возможность увеличения количества основных центров поверхности оксидов металлов и кремния путем иммобилизации молекул *L*-пролина в процессе золь-гель синтеза оксида с последующим их удалением путем промывки. Каталитические свойства некоторых композитов оксид металла**L*-пролин исследованы в асимметрической реакции Биджинелли.

Добавление индивидуального оксида Mg к L-пролину позволило увеличить *ee* с 11 до 16 % (табл. 2, опыт 5). Если добавление двойных оксидов Si–Mg, Si–Ti или индивидуального оксида Zn к L-пролину привело к снижению *ee* до нуля, то использование соответствующих композитов позволило повысить *ee*. Для композита 6 (опыт 10), полученного в процессе золь-гель синтеза, *ee* = 18 %. Практически во всех опытах превалирует (S)-энантиомер. Удаление L-пролина из композитов (образцы 3, 6, 9) приводит к снижению *ee* почти до нуля (опыты 11, 13 и 15). Полученные результаты показывают, что L-пролинаты металлов, сформированные на поверхности оксидов, можно рассматривать в качестве хиральных индукторов реакции Биджинелли.

N⁰	Оксид	Varauuaaran	22 0/
опыта	или композит	Катализатор	<i>ee</i> , 70
1	_	<i>L</i> -пролин	11 (S)
2	ZnO (1)		0
3	$SiO_2-TiO_2(8)$		0
4	$SiO_2-MgO(5)$		0
5	MgO (4)	<i>L</i> -пролин	16 (<i>S</i>)
6	SiO ₂	<i>L</i> -пролин	6 (S)
7	TiO ₂	<i>L</i> -пролин	12(S)
8	ZnO (1)	<i>L</i> -пролин	0
9	SiO_2 - $TiO_2(8)$	<i>L</i> -пролин	2(S)
10	Композит SiO ₂ -	18 (<i>S</i>)	
11	Композит SiO ₂	4(R)	
12	Композит SiC	2.6(S)	
13	Композит SiC	0	
14	Композит	12 (<i>S</i>)	
15	Композит	0	

Таблица 2. Результаты стереоселективной реакции Биджинелли

Заключение. Получены композиты ZnO*L-пролин, $SiO_2-(MgOH)_2*L$ -пролин и SiO_2-TiO_2* L-пролин, при формировании которых в процессе золь-гель синтеза по данным ИК-спектроскопии наблюдаются преимущественное разрушение цвиттер-ионной структуры L-пролина и образование комплекса, близкого по спектральным характеристикам к L-пролинату металла. Изменения полос связей Si-O, металл-кислород в ИК-спектрах композитов, особенно после удаления L-пролина, могут быть связаны с формированием его молекулярного отпечатка.

Показано, что модификация оксидов в процессе их золь-гель синтеза L-пролином позволяет в несколько раз увеличить количество включенных в композит молекул L-пролина по сравнению с обычной сорбцией. При этом для композита SiO₂–TiO₂*L-пролин обнаружен рост количества основных активных центров более чем в три раза после удаления L-пролина, что может быть новым способом формирования активных центров на поверхности оксидов. Добавление композитов оксид металла*Lпролин повышает энантиомерный избыток продукта реакции Биджинелли, что можно объяснить наличием на поверхности катализатора структур, близких к L-пролинатам металлов.

Работа выполнена в рамках государственного задания АААА-А19-119012290117-6 с использованием оборудования Центра коллективного пользования "Спектроскопия и анализ органических соединений" (ЦКП "САОС").

[1] Ю. А. Титова, О. В. Федорова, Г. Л. Русинов, В. Н. Чарушин. Успехи химии, 84, № 12 (2015) 1294—1515

[2] J. L. G. Fierro. Metal Oxides. Chemistry and Applications, New York, Taylor & Francis Group (2006) 247–300

[3] А. А. Давыдов. ИК-спектроскопия в химии поверхности окислов, Новосибирск, Наука (1984) 10—66
 [4] А. Davydov. Molecular Spectroscopy of Oxide Catalyst Surfaces, Chichester, John Wiley & Sons Ltd. (2003) 27—179, 445—453

[5] **R. T. Koodali, K. J. Klabunde.** In: Surface and Nanomolecular Catalysis. Catalysis by Metal Oxides, New York, Taylor & Francis Group (2006) 48—50

[6] К. Танабе. Твердые кислоты и основания, Москва, Мир (1973) 13-67

[7] О. В. Федорова, М. С. Валова, Ю. А. Титова, И. Г. Овчинникова, А. Н. Гришаков, М. А. Уймин, А. А. Мысик, А. Е. Ермаков, Г. Л. Русинов, В. Н. Чарушин. Кинетика и катализ, 52, № 2 (2011) 234—241

[8] О. В. Федорова, О. В. Корякова, М. С. Валова, И. Г. Овчинникова, Ю. А. Титова, Г. Л. Русинов, В. Н. Чарушин. Кинетика и катализ, **51**, № 4 (2010) 590—596

[9] O. V. Fedorova, Yu. A. Titova, A. Yu. Vigorov, M. S. Toporova, O. A. Alisienok, A. N. Murashkevich, V. P. Krasnov, G. L. Rusinov, V. N. Charushin. Catal. Lett., 146, N 2 (2016) 493–498

[10] L. V. Chopda, P. N. Dave. Chem. Sel., 5 (2020) 5552-5572

- [11] K. S. Atwal, B. N. Swanson, S. E. Unger, D. M. Floyd, S. Moreland, A. Hedberg, B. C. O'Reilly.
 J. Med. Chem., 34 (1991) 806—811
- [12] S. DeBonis, J. P. Simorre, I. Crevel, L. Lebeau, D. A. Skoufias, A. Blangy, C. Ebel, P. Gans, R. Cross, D. D. Hackney, R. H. Wade, F. Kozielski. Biochemistry, 42, N 2 (2003) 338–349
- [13] M. M. Heravi, S. Asadi, B. M. Lashkariani. Mol. Divers., 17 (2013) 389-407
- [14] E. R. Jarvo, S. J. Miller. Tetrahedron, 58 (2002) 2481–2495
- [15] K. Nakamura, R. Yamanka, T. Matsuda, T. Harada. Tetrahedron: Asymmetry, 14 (2003) 2659–2681
- [16] W. Hotz, F. Tanaka, C. F. Barbas. Acc. Chem. Res., 37 (2004) 580-591
- [17] J. Pandey, N. Anand, R. P. Tripathi. Tetrahedron, 65 (2009) 9350-9356
- [18] G. Brahmachari, Â. Fátima, B. S. Terra, L. S. Neto, T. C. Braga. J. Adv. Res., 6 (2015) 317-337
- [19] Z. N. Siddiqui. C. R. Chimie, 16 (2013) 183-188
- [20] A. Ghorbani-Choghamarani, P. Zamani. Chin. Chem. Lett., 24, N 9 (2013) 804-808
- [21] S. J. Bae, S. W. Kim, T. Hyeon, B. M. Kim. Chem. Commun. (2000) 31-32
- [22] S. W. Kim, S. J. Bae, T. Hyeon, B. M. Kim. Microporous Mesoporous Mater., 44-45 (2001) 523-529
- [23] Zh. An, W. Zhang, H. Shi, J. He. J. Catalysis, 241 (2006) 319-327
- [24] А. Н. Мурашкевич. Вестн. БРФФИ, 8, № 3 (2020) 56—66
- [25] П. П. Федоров, Е. А. Ткаченко, С. В. Кузнецов, В. В. Воронов, С. В. Лаврищев. Неорг. матер., 43, № 5 (2007) 574—576
- [26] А. Н. Мурашкевич, О. А. Алисиенок, И. М. Жарский. Кинетика и катализ, 52, № 6 (2011) 1—8

[27] М. С. Валова, О. В. Корякова, А. И. Максимовских, О. В. Федорова, А. Н. Мурашкевич,

О. А. Алисиенок. Журн. прикл. спектр., 81, № 3 (2014) 402—407 [M. S. Valova, O. V. Koryakova, A. I. Maksimovskikh, O. V. Fedorova, A. N. Murashkevich, O. A. Alisienok. J. Appl. Spectr., 81 (2014) 422—426]

- [28] ГОСТ 18307. Белая сажа. Технические условия
- [29] В. Н. Бородин. Журн. физ. химии, 51 (1977) 928—929
- [30] A. W. Herlinger, Th. V. Long II. J. Am. Chem. Soc., 92 (1970) 6481-6486
- [31] Л. Беллами. Инфракрасные спектры сложных молекул, Москва, Иностр. лит. (1963) 335—339, 372—373
- [32] F. Boccuzzi, C. Morterra, R. Scala, A. Zecchina. J. Chem. Soc. Faraday Trans., 77, N 2 (1981) 2059-2066
- [33] F. Boccuzzi, E. Borello, A. Zecchina, A. Bossi, M. Camia. J. Catal., 51 (1978) 150-159
- [34] G. Heiland, H. Lüth. Solid State Commun., 5 (1967) 199–202

[35] D. Lin-Vien, N. Colthup, W. Fateley, J. Grasselli. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Boston, Academic Press (1991) 156–157

[36] К. Накамото. ИК спектры и спектры КР неорганических и координационных соединений, Москва, Мир (1991) 219—223, 274—279, 109

[37] A. R. Oliveira, R. Katla, M. P. D. Rocha, T. B. Albuquerque, C. D. G. Silva, V. L. Kupfer, A. W. Rinaldi, N. L. C. Domingues. Synthesis, 48 (2016) 4489–4494

[38] **R. A. Nyquist, R. O. Kagel.** Infrared Spectra of Inorganic Compounds, New York–London, Academic press (1971) 206–207, 220–221, 234–235