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SPECIATION OF CHROMIUM COMPOUNDS FROM ZSM-5 INTO AN IONIC LIQUID
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The speciation of extracted chromium from ZSM-5 into an ionic liquid (IL) was studied using X-ray ab-
sorption near-edge structure (XANES) spectroscopy. The main adsorbed chromium species in ZSM-5 were
Cr(VI)-HA (Cr(VI) chelated with humic acids (HAs)) (57%), Cr(VIDaas (Cr(VI) adsorbed on ZSM-5) (33%),
and Cr(Ill)-HA (Cr(lll) chelated with HA) (10%). In this work, I-butyl-3-methylimidazolium chloride
([Cimim]Cl), was used as the IL to extract the chromium compounds from ZSM-5. Experimentally, approxi-
mately 75% of the chromium compounds were extracted within 30 min at 343 K. Combining the chromium
extraction efficiency and component fitting results of the XANES spectra, almost all of Cr(VI)-HA was ex-
tracted into [Cymim]Cl Following extraction, 34.5% of the Cr(VI) compounds were reduced to form
Cr(IIl)-HA and Cr(III) ions. The Cr-O bond distance of Cr compounds was 1.69 A in [Cymim]CI as shown
by X-ray absorption fine structure (EXAFS) spectroscopy. 'H nuclear magnetic resonance (NMR) showed
that the reduction and extraction of Cr(VI) compounds were affected by [Cqmim]". The non-extractable
chromium species in ZSM-5 were Cr(VI)aas (9%), Cr(lll)-HA (10.8%), and Cr(Ill)aas (5.2%). The fraction of
Cr(VI) was decreased greatly because of the use of [Camim]Cl as the extractant.

Keywords: chromium, ZSM-5, ionic liquid, X-ray absorption fine structure, X-ray absorption near-edge
structure.
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C nomowvio penmeenosckoil abcopoyuonnoi cnexmpockonuu XANES uzyuen 6ud xpoma, u3eneuenHnozo
u3 ZSM-5 6 uonnyio scuokocms (MK). Ocroguvie 6udvl adcopbupogannozo xpoma ¢ ZSM-5: Cr(VI)-HA(Cr(VI),
xenamuposanuviil eymunosvimu kucromamvu (HAs) 57%, Cr(VDaas (Cr(V1), aocopbuposannviii uz ZSM-5)
33% u Cr(Ill)-HA (Cr(1l), xeramuposannvii HA) 10%. Xnopuo 1-6ymun-3-wemunumuoazonus ([Cmim]Cl)
ucnonvzosarn 6 kavecmee VK 0ns uzeneuenus coeounenuti xpoma us ZSM-5. DxcnepumenmanoHuim nymem
uzeneyenvl ~75% coeounenuti xpoma 6 meuenue 30 mun npu 343 K. Kombunuposanuem s¢hgpexmuernocmu
U3GNEUEHUSL XpoMa U Pe3yabmamos no02oOHKU Komnowenmos cnekmpos XANES Cr(VI)-HA nonyuen
6 [Csmim]Cl. Ilocae sxcmpaxyuu 34.5% coeounenuti Cr(VI) eoccmanasnusaromes ¢ 00pazosanuem UoHO8
Cr(IIl)-HA u Cr(Ill). Coznacrno dannvim EXAFS, onuna ceészu Cr-O 6 coedunenusx Cr 1.69 A & [Cymim]CL.
Pesynomamor 'H SAMP-cnexmpockonuu nokaswléaom, 4mo Hda 60CCMAH0EIEHUe U IKCMPAKYUIO COOUHEHUTI
Cr(VI) enusem [Cmim]". Cr(VID)ais(9%), Cr(Ill)-HA (10.8%) u Cr(I1l)qas (5.2%) saenanomesa nesxcmpazupy-
embimu yacmuyamu xpoma 6 ZSM-5. IIpu ucnoavzosanuu [Cmim]Cl ¢ kauecmege sxcmpazcenma dons Cr(VI)
SHAYUMENbHO CHUNCAEMCAL.

Knrueswie cnosa: xpom, ZSM-5, uonnas scuokocmo, EXAFS, XANES.

Introduction. Chromium-containing wastewater is produced and discharged from human activities such
as metallurgy, electroplating, leather tanning, and wood preserving [1-3]. Therefore, chromium compounds
may be released into the environment and cause pollution. A stable oxidation state of chromium in the natu-
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ral environment is hexavalent chromium Cr(VI), which is genetically toxic to cells [4—6]. It has been verified
that Cr(VI) compounds may be harmful to the respiratory system, immune system, liver, and kidneys [7].
Moreover, the risk of cancers that are induced in bone, the prostate, and the stomach are also increased by
exposure to Cr(VI) compounds [7].

In soil, Cr(VI) compounds are mobile and do not adsorb well in soil [8, 9]. However, Cr(VI) can chelate
with humic acid (Cr(VI)-HA) [10], which allows it to be adsorbed by soil and biochars. The biochar can re-
move Cr(VI) ions from water in acidic conditions but the lowest desorption of Cr(VI) from biochars was ob-
tained by concentrated HCI and HNOs [11]. Therefore, technologies can be developed to use these character-
istics for soil remediation, such as removing chromium pollutants from soil. Soil contains natural zeolites
that are hydrated aluminosilicate minerals. At neutral pH, CrO4>~ can adsorb on the zeolite because the size
of the molecule matches the pore size of the zeolite [12]. ZSM-5, a microporous zeolite comprising SiO4 and
AlOg4, forms a three-dimensional structure with a 0.55-nm pore opening. ZSM-5 has high thermal and hydro-
thermal stabilities, uniform pore size, and Bronsted acidity properties. In this study, Cr(VI) ionic species ad-
sorbed in the micropores of soil are simulated by adsorbed humic acid (HA) on ZSM-5.

Because of special physical and chemical properties, ionic liquids (ILs) can be applied in electrochem-
istry, separations, and catalysis because of their low vapor pressure, high thermal stability, non-flammability,
and high viscosity [13, 14]. Here, HA is extracted with ILs, and an interaction between the IL and HA is also
observed. Hydrophilic and hydrophobic ILs allow selective extraction of metal ions in aqueous solutions
[15, 16]. Moreover, metals in pores, which simulate contaminated soil, can also be extracted with ILs
[10, 17, 18]. In previous work, we found that the extraction efficiency of Cr(VI) chelated with HA was high-
er than that of Cr(III) chelated with HA by the IL [10]. Therefore, ILs are used here as the extracting solution
for the separation process.

The distance between a center atom and its ligand(s) and the coordination number can be determined by
the EXAFS (extended X-ray absorption fine structure) spectrum and the XANES (X-ray absorption near
edge structure) spectrum reflects the state of electron orbitals in the center atom. Furthermore, X-ray absorp-
tion data reveal the speciation of contaminants. Thus, the main objective of this work is to study the specia-
tion of chromium adsorbed on ZSM-5 and extracted into 1-butyl-3-methylimidazolium chloride ([C4smim]Cl)
using EXAFS and XANES spectroscopies.

Experimental. The simulated soil mixture contained 2 g of ZSM-5, 1.5 g of HA (humic acid sodium
salt, Sigma-Aldrich), and 50 mL of deionized water. The mixture was then stirred for 24 h and dried at
343 K to remove the H,O. The created solid will be referred to as HA-ZSM-5. The simulated chromium-
contaminated soil, Cr(VI) adsorbed on HA-ZSM-5, was prepared by mixing 30 mL of 0.03 M K,Cr,0
(99%, Showa) and 3.5 g of HA-ZSM-5 at 298 K for 1.5 h. The slurry was then filtered with 10-um filter pa-
per. The solid sample was dried at 343 K. The Cr(IIT)-HA samples for X-ray absorption spectroscopic (XAS)
studies were also similarly prepared, with CrCl3-6H>0O (93%, Showa) being used as the Cr(IlI) species.

A detailed procedure for the preparation of the IL ([Csmim]Cl) has been described previously [18]. Ap-
proximately 0.4 g of Cr(VI)/HA-ZSM-5 was extracted using 1.5 g of [Csmim]Cl in a 10-mL glass bottle
stirred at 343 K for 30 min. After extraction, the solid was leached with H>O to remove the [C4smim]Cl. The
solids were then digested to determine the extraction efficiency of chromium from ZSM-5 to [Csmim]CL.
The concentrations of chromium in the digested solutions were measured using an atomic absorption spec-
trometer (Hitachi Z-5000). After extraction, the leached [C4smim]Cl with H,O was dried at 373 K to remove
the H,O.

The Cr K-edge XAS spectra of chromium samples before and after extraction with [Csmim]Cl were
recorded on the Wiggler beam line (16A1) at the Taiwan National Synchrotron Radiation Research Center.
The electron storage ring was operated at an energy of 1.5 GeV and a current of 300 mA. A chromium foil
absorption edge at 5989 eV was used to calibrate the photon energy. The fluorescence mode with a Lytle de-
tector was used to measure the Cr K-edge absorption spectra. The XANES spectra of chromium model com-
pounds such as CrCls;-6H,0, K>CrO7, Cr(NO3)3, Cr(OH)3, NaxCrO4, Cr203, CrOs, Cr(VI)-HA, Cr(III)-HA,
Cr(VDags (by impregnation of K>CrO; (3 wt%) on ZSM-5), Cr(VI).s (by impregnation of CrClz-6H,O
(3 wt%) on ZSM-5), Cr(VI) ion (prepared by dissolution of 0.5 g K,CrO7 in 50 mL H,0), Cr(IIl) ion (pre-
pared by dissolution of 0.5 g CrCl3-6H20 in 50 mL H,0) and Cr foil were also measured.

The EXAFS data were analyzed using UWXAFS 3.0 and FEFF 8.0 simulation programs [19-22]. The
normalization of edge jump of isolated EXAFS data was processed and then the data was converted to a
wavenumber scale. To diminish the residual and Debye—Waller factors of analysis, a Fourier transform was
performed on k*-weighted EXAFS oscillations in the range of 25+5 to 120+5 nm ™.
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'"H NMR shifts of the IL samples were determined on a Bruker Advance 300 spectrometer with tetrame-
thyl silane (TSM) as an internal standard (acquisition time is 1.373 s, actual pulse repetition time is 2 s,
number of scans is 32, and excitation pulse angle is 30°).

Results and discussion. The chromium species in ZSM-5 prior to and after extraction was obtained by
XANES and EXAFS. The chemical changes of chromium compounds during extraction were also revealed
at the molecular scale. In the pre-edge of XANES spectra, the intensity of 3d-elements with 7, symmetry is
larger than those with O, symmetry (Fig. 1). Because of the p component in d-p hybridized orbital, the in-
tense pre-edge peaks for tetrahedral compounds of 3d-transition metals appear. The height of the pre-edge
peak depends on the number of d-electrons in tetrahedral compounds [23, 24]. The pre-edge peak at
5993.5 eV in the XANES spectra demonstrates the existence of Cr(VI), Cr(V) or Cr(IV) in the ZSM-5 and
[Camim]CI (Fig. 1). The Cr(VI) compound is a stable species found in the environment. Therefore, the
chromium compound in ZSM-5 and [Csmim]Cl may likely be a Cr(VI) species. The pre-edge peak is barely
observed in the octahedral structure of Cr(III) [24].
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Fig. 1. The least-squares fitted XANES spectra of chromium compounds (Cr(VI)-HA (1),
Cr(VDaas (2), Cr(III)-HA (3), Cr(IIl) ion (4), Cr(Ill)ags (5)): (a) adsorbed in ZSM-5,
(b) extracted in [C4mim]Cl, and (c) remains in ZSM-5 (not extractable).

Figure 1a shows that Cr(VI) compounds can migrate into the channels of ZSM-5 and then be adsorbed
onto ZSM-5. Moreover, the reduction of Cr(VI) by HA to form Cr(IlI)-HA was found. Figure 1a shows that
the main species in ZSM-5 were Cr(VI)-HA (57%), Cr(VID)ags (33%), and Cr(IIT)-HA (10%). This demon-
strates that Cr(VI) compounds can be adsorbed on ZSM-5.

Approximately 75% of the chromium compounds from the sorbent (ZSM-5) were extracted into
[Csmim]Cl at 343 K within 30 min. After extraction, the main species in [C4mim]Cl were Cr(VI)-HA (54%),
Cr(Il)-HA (31%), and Cr(Ill) ions (15%) (Fig. 1b). Experimentally, the extraction efficiency of the
Cr(IlT)-HA and Cr(III) ions into [C4mim]Cl was less than 1%. Therefore, the Cr(VI) compounds were the
main extracts from ZSM-5 into [C4smim]Cl. To obtain the interaction of the extracted compounds and
[C4mim]Cl, the 'H NMR spectra of [Csmim]* were determined prior to and after extraction, as shown
in Fig. 2. The '"H NMR features of [Csmim]* at 0.81, 1.17, 1.72, 3.89, 8.02, and 9.86 ppm were broadened,
which suggests interactions between the chromium compounds and the imidazole ring of [Csmim]" during
extraction.
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Fig. 2. "TH NMR spectra of the IL ([C4mim]Cl) prior to (1) and after (2) extraction.

Combining the chromium extraction efficiency and fitting the results from the XANES spectra, the per-
centages of chromium species in ZSM-5 and [C4smim]Cl prior to and after extraction are shown in Table 1.
Approximately 75% of the Cr(VI) compounds were extracted, and then, 34.5% of the Cr(VI) compounds
underwent enhanced reduction to form Cr(Ill)-HA and Cr(IIl) ions. We also found that the main Cr(VI)
compound was Cr(VI).gs in ZSM-5 after extraction. Therefore, [C4mim]Cl has the selectivity to extract most
of the Cr(VI)-HA. Furthermore, the enhanced reduction of Cr(VI) occurred in the presence of [C4smim]Cl.
After extraction, the Cr(VI)/Cr(III) ratios were 1.17 and 0.56 in [C4mim]CI and ZSM-5, respectively.

TABLE 1. Percentages of Chromium Compounds in ZSM-5 and [C,;mim]CI During Extraction

Prior to extraction After extraction

Compounds in ZSM-5 in [C,mim]CI (noineifggt ;ble)
Cr(VD)-HA, % 57 40.5 -

Cr(V1)ads, % 33 - 9
Cr(II1)-HA, % 10 233 10.8

Cr(IT1)ags, % - - 5.2
Cr(III) ion, % - 11.2 —
Cr(VD)/Cr(11I) 9 1.17 0.56

TABLE 2. Speciation Parameters of Chromium Compounds Adsorbed in ZSM-5
and Extracted in [C4mim]Cl

.. First Bond Coordination 2 <2
Condition shell | distance, A number o’ A
Prior to extraction Cr-O 1.61 2.0 0.001
After extraction
in [Cymim]Cl Cr-O 1.69 1.4 0.001
in ZSM-5 (not extractable) | Cr-O 1.98 3.4 0.001

Note. Ac’: Debye-Waller factors.

Table 2 shows the EXAFS data of chromium in ZSM-5 and [Csmim]Cl. The Fourier transform convert-
ed the EXAFS spectra so that the coordination numbers (CNs) and bond distances could be determined.
The Cr(VI) compounds in ZSM-5 had a Cr-O bond distance of 1.61 A with a CN of 2.0. After extraction,
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Cr(VI)-HA, Cr(IIT)-HA, and Cr(III) ions were found in the [C4mim]CI. The ratio of Cr(VI)/Cr(Ill) was 1.17,
and the Cr-O bond distance of chromium compounds was 1.69 A. The non-extractable chromium remaining
in the ZSM-5 phase had bond distance of 1.98 A. This suggests that the fraction of Cr(III) compounds is in-
creased in ZSM-5.

Conclusions. Using FTIR spectroscopy, chromium adsorbed on humic acid and ZSM-5. The main
chromium species in ZSM-5 were Cr(VI)-HA, Cr(VI)ags and Cr(III)-HA. Approximately 75% of chromium
compounds were extracted into [Csmim]CI at 343 K within 30 min. After extraction, most of the Cr(VI)
compounds that were extracted were then reduced to form Cr(III)-HA and Cr(IIl) ions in the [C4smim]CI.
The 'H NMR spectra show that an interaction between the chromium species and [Csmim]~ occurred.
The enhanced reduction of Cr(VI) compounds with HA was affected by [Csmim]’. Furthermore, the
Cr(VD/Cr(Ill) ratios in [C4smim]Cl and ZSM-5 were decreased after extraction. The EXAFS spectrum
showed that the Cr-O bond distance in ZSM-5 was 1.61 A with a coordination number of 2.0. Because of the
increased fraction of Cr(Ill) in [C4smim]Cl and ZSM-5 after extraction, the Cr-O bond distances were 1.69
and 1.98 A in [Csmim]Cl and ZSM-5, respectively.
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