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The speciation of extracted chromium from ZSM-5 into an ionic liquid (IL) was studied using X-ray ab-

sorption near-edge structure (XANES) spectroscopy. The main adsorbed chromium species in ZSM-5 were 
Cr(VI)-HA (Cr(VI) chelated with humic acids (HAs)) (57%), Cr(VI)ads (Cr(VI) adsorbed on ZSM-5) (33%), 
and Cr(III)-HA (Cr(III) chelated with HA) (10%). In this work, 1-butyl-3-methylimidazolium chloride 
([C4mim]Cl), was used as the IL to extract the chromium compounds from ZSM-5. Experimentally, approxi-
mately 75% of the chromium compounds were extracted within 30 min at 343 K. Combining the chromium 
extraction efficiency and component fitting results of the XANES spectra, almost all of Cr(VI)-HA was ex-
tracted into [C4mim]Cl. Following extraction, 34.5% of the Cr(VI) compounds were reduced to form  
Cr(III)-HA and Cr(III) ions. The Cr-O bond distance of Cr compounds was 1.69 Å in [C4mim]Cl as shown 
by X-ray absorption fine structure (EXAFS) spectroscopy. 1H nuclear magnetic resonance (NMR) showed 
that the reduction and extraction of Cr(VI) compounds were affected by [C4mim]+. The non-extractable 
chromium species in ZSM-5 were Cr(VI)ads (9%), Cr(III)-HA (10.8%), and Cr(III)ads (5.2%). The fraction of 
Cr(VI) was decreased greatly because of the use of [C4mim]Cl as the extractant.  

Keywords: chromium, ZSM-5, ionic liquid, X-ray absorption fine structure, X-ray absorption near-edge 
structure. 
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С помощью рентгеновской абсорбционной спектроскопии XANES изучен вид хрома, извлеченного 

из ZSM-5 в ионную жидкость (ИЖ). Основные виды адсорбированного хрома в ZSM-5: Cr(VI)-HA(Cr(VI), 
хелатированный гуминовыми кислотами (HAs) 57%, Cr(VI)ads (Cr(VI), адсорбированный из ZSM-5) 
33% и Cr(III)-HA (Cr(III), хелатированный HA) 10%. Хлорид 1-бутил-3-метилимидазолия ([C4mim]Cl) 
использован в качестве ИЖ для извлечения соединений хрома из ZSM-5. Экспериментальным путем 
извлечены 75% соединений хрома в течение 30 мин при 343 К. Комбинированием эффективности 
извлечения хрома и результатов подгонки компонентов спектров XANES Cr(VI)-HA получен 
в [C4mim]Cl. После экстракции 34.5% соединений Cr(VI) восстанавливаются с образованием ионов 
Cr(III)-HA и Cr(III). Согласно данным EXAFS, длина связи Cr-O в соединениях Cr 1.69 Å в [C4mim]Cl. 
Результаты 1H ЯМР-спектроскопии показывают, что на восстановление и экстракцию соединений 
Cr(VI) влияет [C4mim]+. Cr(VI)ads(9%), Cr(III)-HA (10.8%) и Cr(III)ads (5.2%) являлются неэкстрагиру-
емыми частицами хрома в ZSM-5. При использовании [C4mim]Cl в качестве экстрагента доля Cr(VI) 
значительно снижается. 

Ключевые слова: хром, ZSM-5, ионная жидкость, EXAFS, XANES. 
 
Introduction. Chromium-containing wastewater is produced and discharged from human activities such 

as metallurgy, electroplating, leather tanning, and wood preserving [1–3]. Therefore, chromium compounds 
may be released into the environment and cause pollution. A stable oxidation state of chromium in the natu-
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ral environment is hexavalent chromium Cr(VI), which is genetically toxic to cells [4–6]. It has been verified 
that Cr(VI) compounds may be harmful to the respiratory system, immune system, liver, and kidneys [7]. 
Moreover, the risk of cancers that are induced in bone, the prostate, and the stomach are also increased by 
exposure to Cr(VI) compounds [7].  

In soil, Cr(VI) compounds are mobile and do not adsorb well in soil [8, 9]. However, Cr(VI) can chelate 
with humic acid (Cr(VI)-HA) [10], which allows it to be adsorbed by soil and biochars. The biochar can re-
move Cr(VI) ions from water in acidic conditions but the lowest desorption of Cr(VI) from biochars was ob-
tained by concentrated HCl and HNO3 [11]. Therefore, technologies can be developed to use these character-
istics for soil remediation, such as removing chromium pollutants from soil. Soil contains natural zeolites 
that are hydrated aluminosilicate minerals. At neutral pH, CrO4

2− can adsorb on the zeolite because the size 
of the molecule matches the pore size of the zeolite [12]. ZSM-5, a microporous zeolite comprising SiO4 and 
AlO4, forms a three-dimensional structure with a 0.55-nm pore opening. ZSM-5 has high thermal and hydro-
thermal stabilities, uniform pore size, and Brönsted acidity properties. In this study, Cr(VI) ionic species ad-
sorbed in the micropores of soil are simulated by adsorbed humic acid (HA) on ZSM-5. 

Because of special physical and chemical properties, ionic liquids (ILs) can be applied in electrochem-
istry, separations, and catalysis because of their low vapor pressure, high thermal stability, non-flammability, 
and high viscosity [13, 14]. Here, HA is extracted with ILs, and an interaction between the IL and HA is also 
observed. Hydrophilic and hydrophobic ILs allow selective extraction of metal ions in aqueous solutions  
[15, 16]. Moreover, metals in pores, which simulate contaminated soil, can also be extracted with ILs  
[10, 17, 18]. In previous work, we found that the extraction efficiency of Cr(VI) chelated with HA was high-
er than that of Cr(III) chelated with HA by the IL [10]. Therefore, ILs are used here as the extracting solution 
for the separation process.  

The distance between a center atom and its ligand(s) and the coordination number can be determined by 
the EXAFS (extended X-ray absorption fine structure) spectrum and the XANES (X-ray absorption near 
edge structure) spectrum reflects the state of electron orbitals in the center atom. Furthermore, X-ray absorp-
tion data reveal the speciation of contaminants. Thus, the main objective of this work is to study the specia-
tion of chromium adsorbed on ZSM-5 and extracted into 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) 
using EXAFS and XANES spectroscopies. 

Experimental. The simulated soil mixture contained 2 g of ZSM-5, 1.5 g of HA (humic acid sodium 
salt, Sigma-Aldrich), and 50 mL of deionized water. The mixture was then stirred for 24 h and dried at 
343 K to remove the H2O. The created solid will be referred to as HA-ZSM-5. The simulated chromium-
contaminated soil, Cr(VI) adsorbed on HA-ZSM-5, was prepared by mixing 30 mL of 0.03 M K2Cr2O7 
(99%, Showa) and 3.5 g of HA-ZSM-5 at 298 K for 1.5 h. The slurry was then filtered with 10-μm filter pa-
per. The solid sample was dried at 343 K. The Cr(III)-HA samples for X-ray absorption spectroscopic (XAS) 
studies were also similarly prepared, with CrCl3·6H2O (93%, Showa) being used as the Cr(III) species. 

A detailed procedure for the preparation of the IL ([C4mim]Cl) has been described previously [18]. Ap-
proximately 0.4 g of Cr(VI)/HA-ZSM-5 was extracted using 1.5 g of [C4mim]Cl in a 10-mL glass bottle 
stirred at 343 K for 30 min. After extraction, the solid was leached with H2O to remove the [C4mim]Cl. The 
solids were then digested to determine the extraction efficiency of chromium from ZSM-5 to [C4mim]Cl. 
The concentrations of chromium in the digested solutions were measured using an atomic absorption spec-
trometer (Hitachi Z-5000). After extraction, the leached [C4mim]Cl with H2O was dried at 373 K to remove 
the H2O. 

The Cr K-edge XAS spectra of chromium samples before and after extraction with [C4mim]Cl were 
recorded on the Wiggler beam line (16A1) at the Taiwan National Synchrotron Radiation Research Center. 
The electron storage ring was operated at an energy of 1.5 GeV and a current of 300 mA. A chromium foil 
absorption edge at 5989 eV was used to calibrate the photon energy. The fluorescence mode with a Lytle de-
tector was used to measure the Cr K-edge absorption spectra. The XANES spectra of chromium model com-
pounds such as CrCl3·6H2O, K2CrO7, Cr(NO3)3, Cr(OH)3, Na2CrO4, Cr2O3, CrO3, Cr(VI)-HA, Cr(III)-HA, 
Cr(VI)ads (by impregnation of K2CrO7 (3 wt%) on ZSM-5), Cr(VI)ads (by impregnation of CrCl3·6H2O 
(3 wt%) on ZSM-5), Cr(VI) ion (prepared by dissolution of 0.5 g K2CrO7 in 50 mL H2O), Cr(III) ion (pre-
pared by dissolution of 0.5 g CrCl3·6H2O in 50 mL H2O) and Cr foil were also measured.  

The EXAFS data were analyzed using UWXAFS 3.0 and FEFF 8.0 simulation programs [19–22]. The 
normalization of edge jump of isolated EXAFS data was processed and then the data was converted to a 
wavenumber scale. To diminish the residual and Debye–Waller factors of analysis, a Fourier transform was 
performed on k3-weighted EXAFS oscillations in the range of 25±5 to 120±5 nm−1. 
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1H NMR shifts of the IL samples were determined on a Bruker Advance 300 spectrometer with tetrame-
thyl silane (TSM) as an internal standard (acquisition time is 1.373 s, actual pulse repetition time is 2 s, 
number of scans is 32, and excitation pulse angle is 30o).  

Results and discussion. The chromium species in ZSM-5 prior to and after extraction was obtained by 
XANES and EXAFS. The chemical changes of chromium compounds during extraction were also revealed 
at the molecular scale. In the pre-edge of XANES spectra, the intensity of 3d-elements with Td symmetry is 
larger than those with Oh symmetry (Fig. 1). Because of the p component in d-p hybridized orbital, the in-
tense pre-edge peaks for tetrahedral compounds of 3d-transition metals appear. The height of the pre-edge 
peak depends on the number of d-electrons in tetrahedral compounds [23, 24]. The pre-edge peak at 
5993.5 eV in the XANES spectra demonstrates the existence of Cr(VI), Cr(V) or Cr(IV) in the ZSM-5 and 
[C4mim]Cl (Fig. 1). The Cr(VI) compound is a stable species found in the environment. Therefore, the 
chromium compound in ZSM-5 and [C4mim]Cl may likely be a Cr(VI) species. The pre-edge peak is barely 
observed in the octahedral structure of Cr(III) [24].  

 

 
 

Fig. 1. The least-squares fitted XANES spectra of chromium compounds (Cr(VI)-HA (1),  
Cr(VI)ads  (2),  Cr(III)-HA  (3),  Cr(III) ion  (4),  Cr(III)ads (5)):  (a)  adsorbed  in  ZSM-5,  

(b) extracted in [C4mim]Cl, and (c) remains in ZSM-5 (not extractable). 
 

Figure 1a shows that Cr(VI) compounds can migrate into the channels of ZSM-5 and then be adsorbed 
onto ZSM-5. Moreover, the reduction of Cr(VI) by HA to form Cr(III)-HA was found. Figure 1a shows that 
the main species in ZSM-5 were Cr(VI)-HA (57%), Cr(VI)ads (33%), and Cr(III)-HA (10%). This demon-
strates that Cr(VI) compounds can be adsorbed on ZSM-5.  

Approximately 75% of the chromium compounds from the sorbent (ZSM-5) were extracted into 
[C4mim]Cl at 343 K within 30 min. After extraction, the main species in [C4mim]Cl were Cr(VI)-HA (54%), 
Cr(III)-HA (31%), and Cr(III) ions (15%) (Fig. 1b). Experimentally, the extraction efficiency of the  
Cr(III)-HA and Cr(III) ions into [C4mim]Cl was less than 1%. Therefore, the Cr(VI) compounds were the 
main extracts from ZSM-5 into [C4mim]Cl. To obtain the interaction of the extracted compounds and 
[C4mim]Cl, the 1H NMR spectra of [C4mim]+ were determined prior to and after extraction, as shown 
in Fig. 2. The 1H NMR features of [C4mim]+ at 0.81, 1.17, 1.72, 3.89, 8.02, and 9.86 ppm were broadened, 
which suggests interactions between the chromium compounds and the imidazole ring of [C4mim]+ during 
extraction.  
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Fig. 2. 1H NMR spectra of the IL ([C4mim]Cl) prior to (1) and after (2) extraction. 

 
Combining the chromium extraction efficiency and fitting the results from the XANES spectra, the per-

centages of chromium species in ZSM-5 and [C4mim]Cl prior to and after extraction are shown in Table 1. 
Approximately 75% of the Cr(VI) compounds were extracted, and then, 34.5% of the Cr(VI) compounds 
underwent enhanced reduction to form Cr(III)-HA and Cr(III) ions. We also found that the main Cr(VI) 
compound was Cr(VI)ads in ZSM-5 after extraction. Therefore, [C4mim]Cl has the selectivity to extract most 
of the Cr(VI)-HA. Furthermore, the enhanced reduction of Cr(VI) occurred in the presence of [C4mim]Cl. 
After extraction, the Cr(VI)/Cr(III) ratios were 1.17 and 0.56 in [C4mim]Cl and ZSM-5, respectively.  
 

TABLE 1. Percentages of Chromium Compounds in ZSM-5 and [C4mim]Cl During Extraction 
 

 
Compounds 

Prior to extraction After extraction

in ZSM-5 in [C4mim]Cl in ZSM-5 
(not extractable) 

Cr(VI)-HA, % 57 40.5 – 
Cr(VI)ads, % 33 – 9 

Cr(III)-HA, % 10 23.3 10.8 
Cr(III)ads, % – – 5.2 

Cr(III) ion, % – 11.2 – 
Cr(VI)/Cr(III) 9 1.17 0.56 

 
TABLE 2. Speciation Parameters of Chromium Compounds Adsorbed in ZSM-5 

and Extracted in [C4mim]Cl 
 

Condition 
First 
shell

Bond 
distance, Å

Coordination 
number σ2, Å2 

Prior to extraction Cr-O 1.61 2.0 0.001 
After extraction  
in [C4mim]Cl Cr-O 1.69 1.4 0.001 

in ZSM-5 (not extractable) Cr-O 1.98 3.4 0.001 

N o t e.		ᇞσ2: Debye-Waller factors. 
 

Table 2 shows the EXAFS data of chromium in ZSM-5 and [C4mim]Cl. The Fourier transform convert-
ed the EXAFS spectra so that the coordination numbers (CNs) and bond distances could be determined.  
The Cr(VI) compounds in ZSM-5 had a Cr-O bond distance of 1.61 Å with a CN of 2.0. After extraction, 
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Cr(VI)-HA, Cr(III)-HA, and Cr(III) ions were found in the [C4mim]Cl. The ratio of Cr(VI)/Cr(III) was 1.17, 
and the Cr-O bond distance of chromium compounds was 1.69 Å. The non-extractable chromium remaining 
in the ZSM-5 phase had bond distance of 1.98 Å. This suggests that the fraction of Cr(III) compounds is in-
creased in ZSM-5.  

Conclusions. Using FTIR spectroscopy, chromium adsorbed on humic acid and ZSM-5. The main 
chromium species in ZSM-5 were Cr(VI)-HA, Cr(VI)ads and Cr(III)-HA. Approximately 75% of chromium 
compounds were extracted into [C4mim]Cl at 343 K within 30 min. After extraction, most of the Cr(VI) 
compounds that were extracted were then reduced to form Cr(III)-HA and Cr(III) ions in the [C4mim]Cl. 
The 1H NMR spectra show that an interaction between the chromium species and [C4mim]+ occurred. 
The enhanced reduction of Cr(VI) compounds with HA was affected by [C4mim]+. Furthermore, the 
Cr(VI)/Cr(III) ratios in [C4mim]Cl and ZSM-5 were decreased after extraction. The EXAFS spectrum 
showed that the Cr-O bond distance in ZSM-5 was 1.61 Å with a coordination number of 2.0. Because of the 
increased fraction of Cr(III) in [C4mim]Cl and ZSM-5 after extraction, the Cr-O bond distances were 1.69 
and 1.98 Å in [C4mim]Cl and ZSM-5, respectively. 
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