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We aimed to assess the near infrared spectroscopy as a method for non-invasive on-line detection of 
hyperglycemia from spent hemodialysis effluent. We used partial least squares regression and several ma-
chine learning algorithms: random forest (RF), logistic regression, K-nearest neighbor (KNN), support vec-
tor machine (SVM), decision tree classifier, and Gaussian naive Bayes (NB) to classify normoglycemia from 
hyperglycemia. These classifier methods were used on the same dataset and evaluated by the area under the 
curve. The serum glucose levels were presented in the form of a binomial variable, where 0 indicated a glu-
cose level within reference range and 1 a glucose level beyond the normal limit. For this reason, the meth-
ods of machine learning were applied as more specific methods of classification. RF and SVM have shown 
the best classification accuracy in predicting hyperglycemia, while decision tree and NB showed average 
accuracy.  
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Спектроскопия в ближней ИК-области использована как метод неинвазивного онлайн выявления 
гипергликемии из отработанного диализирующего раствора у пациентов, находящихся на гемодиа-
лизе. Для отделения гликемии в норме от гипергликемии использованы частичная регрессия 
наименьших квадратов и алгоритмы машинного обучения: случайный лес (RF), логистическая ре-
грессия, K-ближайший сосед (KNN), метод опорных векторов (SVM), классификатор “дерева реше-
ний” и гауссов наивный Байес (NB). Эти методы использованы для одного и того же набора данных. 

 
**Some of the materials from this manuscript were presented at the 56th Congress of the European Renal Associa-
tion – European Dialysis and Transplantation Association, held in Budapest, Hungary in June 2019. 
 

Full text is published in JAS V. 88, No. 3 (http://springer.com/journal/10812) and in electronic version of ZhPS 
V. 88, No. 3 (http://www.elibrary.ru/title_about.asp?id=7318; sales@elibrary.ru). 
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Оценки проведены по площади под кривой. Уровень глюкозы в сыворотке крови представлен в виде 
биномиальной переменной, где 0 – уровень глюкозы в пределах референтного диапазона, 1 – уровень 
глюкозы за пределами нормы. Методы машинного обучения применены в качестве более специфиче-
ских методов классификации. Методы RF и SVM показывают наилучшую точность классификации 
при прогнозировании гипергликемии, “дерево решений” и NB – среднюю. 

Ключевые слова: гемодиализ, машинное обучение, отработанный диализат, спектроскопия  
в ближней ИК-области. 

 
Introduction. Chronic kidney disease (CKD) and diabetes are public health problems that influence 

millions of people worldwide. Recent epidemiological studies suggest that the global prevalence of diabetes 
mellitus will grow from 2.8% in the year 2000 to nearly 4.4% in the 2030 [1]. Inadequate blood glucose con-
trol is considered the leading cause of diabetic nephropathy and progression to renal insufficiency. Poorly 
regulated disease, i.e., poor metabolic control, speeds up the process of renal deterioration. Contributing risk 
factors include duration and type of diabetes, associated hypertension, dyslipidemia and hyperuricemia, and 
their adequate management can slow the progression of diabetic nephropathy [2]. Long-term exposure to hy-
perglycemic milieu is the primary cause of most diabetic complications, including diabetic nephropathy [3, 4].  

The most-studied biological fluids of clinical interest are blood, urine, and, recently, spent dialysate. 
Eddy and Arnold have shown the possibility of glucose detection in spent dialysate utilizing near infrared 
spectroscopy (NIRS) [5]. Due to the large amount of solution required to perform a single dialysis proce-
dure, the dialysis fluid is created by on-line mixing of the ultrapure water with an electrolyte concentrate in-
side a dialysis machine. The machine guarantees electrolytic composition, pH, temperature, and flow rate of 
the dialysis fluid. This fluid usually contains a high glucose concentration to minimize the nutritional loss 
that occurs in patients during hemodialysis [6, 7].  

The direct way of determining metabolites in the patient’s blood during dialysis is based on a simple 
multicomponent determination of certain substances such as urea, creatinine, glucose, electrolytes, etc. 
However, this process requires taking blood from already anemic patients. A possible safer and more con-
venient alternative would be on-line monitoring of substances using biosensors. On-line monitoring of urea, 
creatinine, or glucose is complicated by the fact that blood is a highly saturated fluid, prone to clotting. Kai-
ser et al. have highlighted the problems that arise in the measurement of blood glucose as a result of the 
blood matrix complexity [8]. All amperometric biosensors suffer from interferences in complex matrices 
such as blood or serum. Glucose biosensors also suffer from rapid performance deterioration after implanta-
tion due to tainted surfaces and coagulation caused by poor biocompatibility. Coating of the sensor with pro-
tein or cellular material from the biological matrix is also a frequent phenomenon [9]. We therefore hypothe-
sized that spectrum analysis of the spent dialysate is more reliable as a hyperglycemia sensor. 

Experimental. Samples of spent dialysate were obtained upon five consecutive dialysis treatments from 
three patients treated with chronic bicarbonate hemodialysis (HD). Inclusion criteria were a stable hemodial-
ysis prescription, stable intradialytic blood pressure, absence of physical weakness or dyspnea, and ability to 
rest in a 45–90° position during the entire dialysis session. The patients were well compliant with dialysis 
procedures and had no active infections nor intradialytic complications at the time of sampling. All HD 
treatments were performed under the usual protocol, including ultrafiltration rates prescribed to remove the 
interdialytic weight gain. Patients enrolled in the study were routinely treated with dialyzers containing the 
PAES high-flux membrane (Polyflux 170H, Gambro) with a membrane surface area of 1.7 m2. Dialysis was 
performed using a Dialog+Adimea (BBraunAvitum AG, 34209 Melsungen, Germany) machine. The dialy-
sate contained (mmol/L) Na+ 138, Cl- 110.5, K+ 2, Ca++ 1.75 or 1.50, Mg++ 1, CH3COO- 3, and glucose 
1 g/L. The mean dialysate flow was 500 mL/min, and mean effective blood flow was 300 mL/min. All pa-
tients were dialyzed via antebrachial arteriovenous fistulas using a two-needle system. The Ethical commit-
tee of the University Hospital Center Dr Dragiša Mišović reviewed the study protocols and all patients pro-
vided written informed consent before participating in the study.  

Samples of spent dialysate were collected directly from the dialyzer outlet during the dialysis session. It 
was previously ensured that the dialysate flow was free and uninterrupted. The spent dialysate, containing 
dialyzed waste metabolites, flowed upwards through the cartridge and the outlet to the external environment. 
The baseline dialysate samples were taken from the effluent line 15-min after the beginning of the dialysis 
session. At the same time, blood samples were taken from dialysis blood line, blood pressure was measured, 
and patient’s position was registered. Blood samples were collected from the arterial line of the dialysis sys-
tem, e.g., coming from the patient immediately before entering the dialysis circuit. Blood sampling was nec-
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essary because we had to know the numerical value of glucose in the patient's blood for the training of the 
machine learning algorithm. For each sample, 15 mL of spent dialysate solution was collected into a contai-
ner and stored at room temperature for approximately 3 h before being transported to the research laboratory. 

NIR absorbance spectra of the samples were measured the day after HD treatment. The absorption spec-
trum of each sample was measured three times. This provided a dataset with 126 spectra. NIR optical ab-
sorption spectra were registered using a spectrometer Lambda 950 (Perkin Elmer). This spectrometer was 
equipped with a standard tungsten halogen lamp and PbS detector. The wavelength region of interest was 
700-1700 nm and resolution set to 2 nm. The instrument was connected to a PC running the Windows 7 op-
erating system and controlled by a Perkin Elmer UV WIN LAB Explorer. Serum glucose was measured us-
ing the Dimension RxLMax (Siemens Healthcare GmbH, Germany) machine. The assay is based on the 
hexokinase method. Glucose level above 6 mmol/L was considered hyperglycemic [10].  

For data analysis, we used partial least squares regression (PLSR) and several machine learning (ML) 
algorithms: random forest (RF), logistic regression, K-nearest neighbor (KNN), support vector machine 
(SVM), decision tree classifier, and Gaussian naive Bayes (NB). These classifier methods were used on the 
same dataset with cross validation and the area under the curve (AUC) evaluation. Results were compared 
between different methods. Spectra were normalized using standard normal variates (SNV). In constructing 
the model, we chose the classification approach. For all patients, the serum glucose level was divided into 
two groups: normal (0) and hyperglycemic (1).  

The decision tree represents a classifier that separates variables and their numeric values in such a way 
that there is the greatest difference between values in features relative to the target variable.  

RF utilizes an ensemble of decision trees in order to reach a conclusion. Additionally, it applies random 
samples and features from the dataset for every tree. Every decision tree provides solution, and results from 
a large number of trees should converge to the most accurate results.  

KNN classifies data based on the nearest point in multidimensional space, which are established in the 
training phase. Best results were acquired when four (K = 4) neighbors were used. The distance between 
points was calculated in Euclidian metric. 

SVM utilizes data points to the support plane, which separates data according to the target variable. The 
separation plane is supported with data points with the greatest margin.  

Logistic regression is a classifier that uses a sigmoid function in order to separate the binomial target 
variable based on feature values. C was set to 0.1. Solver was set to ‘lib linear.’ 

The NB classifier is based on the Bayes theorem, and prior probability was set to ‘None.’ 
Stratified cross-validation (CV) with 10 folds was used. The term ‘Stratified’ suggests that each division 

of data on the train and test set was created in such a way that class proportions (in this case 0 and 1) are 
roughly the same size in each fold. Algorithms were evaluated using the obtained operating characteristic 
(ROC) curve and AUC score. The ROC curve coupled with its AUC is a common method used to estimate the 
diagnosis potential of a classifier in clinical applications. A larger AUC indicates higher prediction ability.  

Results and discussion. The correlation coefficient using PLSR technique was observed to be 0.503. 
The nonlinearity between data and blood glucose was due to the presence of several components with over-
lapping spectral features. Furthermore, the value of R2 for PLSR technique was very low; therefore ML was 
considered in the present work for estimation of blood glucose. According to the ROC curve and AUC crite-
rion, the best model was acquired using the RF algorithm, followed by SVM and LR. RF gave an accuracy 
of 91%, followed by SVM of 89% and LR of 82%. KNN had an accuracy of 80%, while Decision Tree with 
AUC and NB had poor accuracy of 71% and 58% respectively. Results are presented in Fig. 1. The AUC 
score of all classifiers are presented on Fig. 2.  

 

Fig. 1. AUC score of algorithms. 

AUC, %

75

50

25

0
   DT   KNN   LR      NB    RF     SVM 

504-3 



ABSTRACTS ENGLISH-LANGUAGE ARTICLES 
 

507

 
 

Fig. 2. AUC score of RF (a), SVM (b), LR (c), KNN (d), DT (e), and Gaussian NB (f) algorithms. 
 

Diabetes complications can be avoided by frequent blood glucose monitoring. For patients using insu-
lin, pre- and post-dialysis blood glucose self-monitoring is recommended at each dialysis session [11]. In 
these patients, due to chronic anemia and such excessive sampling, we tend to reduce the blood taken to the 
lowest possible measure. 

In HD patients with poorly controlled diabetes, the blood glucose levels differ widely between non-
dialysis and dialysis days [12]. Hyperglycemia on hemodialysis is caused by the dialyzer adsorption of pre-
viously administered insulin [12]. For patients with poor glycemic control and high blood glucose levels be-
fore starting hemodialysis treatment, blood glucose levels fluctuate widely. 
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In this study we assessed blood glucose level using the spectrum of the spent dialysate. Several ML al-
gorithms were then applied in order to classify samples in the normal and hyperglycemic groups. The ap-
plied PLSR regression technique yielded poor results, which was expected, since the basic assumption of 
these methods is the independence of various parameters, which is not the case for a non-Newtonian fluid 
such as spent dialysis fluid. The goal of this study was to create a classifier that would be able to classify pa-
tients with normal and high blood glucose levels based on the spent dialysis fluid spectrum. Then the predic-
tion becomes a binary (yes/no) classification problem. From a computational standpoint, classification prob-
lems are easier and more efficient to solve than regression. Data obtained from NIR spectrum of the spent 
dialysate can be input into predictive models to predict hyperglycemic events. Glucose measurement tech-
niques need to allow for constant monitoring of glucose, need to be non-invasive, and need to focus on de-
tection of blood glucose concentration when reaching hyperglycemic levels. Non-invasive methods for mon-
itoring glucose level based on infrared spectroscopy were first invented during the nineties [13]. Since then, 
a wide range of techniques has been developed for the non-invasive observation of glucose based on chemi-
cal, optical, and electrical techniques using microsensor and computer technologies [14]. This development 
of non-invasive techniques was preceded by successful in vitro studies that were based on the determination 
of glucose in aqueous solutions [15, 16] or whole blood [17] by NIRS. Studies were mainly based on the ef-
fects of glucose on certain secondary processes. One of the most famous examples is the effect of glucose on 
the scattering properties of tissue. However, propagation of light through tissue is complicated by the heter-
ogeneous nature of the tissue matrix, thus creating a problem [18]. The NIR region of the electromagnetic 
spectrum covers the wavelength range between 750 and –2500 nm [19]. Light absorption from the NIR re-
gion is primarily caused by the presence of functional groups, C-H, O-H, and N-H. They absorb protons of a 
certain frequency belonging to the NIR region. The principle that the absorption pattern of NIR light  
(700–1700 nm) can be quantitatively related to the glucose concentration is proven [20–25]. 

Among all available methods, PLSR regression has been used most widely for the analysis of the NIR 
spectral data [26]. The biggest problem with PLSR methods is that the spectrum property relationship is as-
sumed to be linear. However, this premise cannot be applied to systems with strong intermolecular or intra-
molecular interactions. If we measure the amount of glucose in a fluid that contains other substituents, we 
cannot simply apply the Beer–Lambert law because we have interactions between components, incorrect dis-
tribution of fluid components, and baseline shift. All of this leads to nonlinearity of the system. This makes 
nonlinear calibration methods necessary for building robust calibration models since these methods have the 
potential to model heavy intrinsic nonlinearities that are found in natural multicomponent systems. 

ML has also been applied to non-invasive glucose measurements (NIGM) in various ways. The re-
searchers combined ML to investigate glucose level in patient blood [24, 27]. ML methods have not only 
been applied in the tracking of glucose but also in predicting hypoglycemia [28, 29]. RF, SVM, KNN, and 
NB were used by Sudharsan et al. [30] to predict hypoglycemia, whereas support vector regression was used 
by Georga et al. [31] for the same reason. Similarly, in the case of neuropathy, Du Brava et al. used RF in 
order to select specific features targeting prediction of diabetic peripheral neuropathy (DPN) [32]. 

The research conducted by Roth et al. [33] has already shown a correlation between the NIR spectrum 
and the glucose concentration of spent dialysis fluid. On the other hand, the goal of the study presented in 
this paper has been to demonstrate a correlation of the NIR spectrum of spent dialysis fluid and blood 
glucose concentration. Further steps in this ongoing study will involve the determination of glucose 
concentration in spent dialysis fluid and blood and their interrelation with the NIR spectrum. 

In this study, we did not record the occurrence of hypoglycemia in our patients, although its detection is 
clinically more important than the detection of hyperglycemia. Obviously, it would not be ethical to 
deliberately induce the state of hypoglycemia to test the success of our algorithm in this regard. On the other 
hand, detecting incidental hypoglycemia would require unpredictable amounts of time and resources. Still, 
we believe that the presented algorithm would be equally successful in detecting hypoglycemia as it was in 
identifying hyperglycemia. 

Conclusions. The aim of this study was to detect hyperglycemia from the matrix of the spent dialysate 
fluid using NIRS. Additionally, further details of the suitability of particular data mining methods used to de-
tect hyperglycemia, such as RF, logistic regression, KNN, SVM, NB, and decision tree classifier, have been 
described. RF and SVM have shown the best classification accuracy for the prediction of hyperglycemia, 
while decision tree and NB have shown average accuracy. This approach can be used for on-line prediction 
of hyperglycemia in hemodialysis patients. Further studies should assess the reliability of NIR with the ML 
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technique for classification problems of a whole range of molecules that can be detected in the spent dialysis 
fluid. 
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