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Application of near-infrared spectroscopy to the prediction of sample content is strongly limited by signal
peak overlap. To analyze the spectral information directly related to the target components and to make the
chemometric model more explanatory, an independent characteristic projection algorithm is proposed. The
algorithm was applied to the independent spectral analysis of a single sample using corn as a representative
example. Moisture, oil, protein, and starch, which are the four main components of corn, were the target
components. The pure component spectra were used the projection directions to decompose the near-infrared
spectrum of a single corn sample,; then four decomposed spectra corresponding to the four pure component
spectra were obtained. Their corresponding relationship was determined using their correlation coefficients
and by comparing their characteristic peaks, and the molecular absorption patterns corresponding to the
characteristic absorption peaks of each decomposed spectrum were analyzed in detail. The theoretical analy-
sis and experimental results indicate that the independent characteristic projection algorithm can be applied
to single-sample spectral analysis to extract more complete physicochemical information about the target
components and provide a theoretical basis for establishing a robust near-infrared spectral chemometric
model with great extrapolation capability and stability.
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Ipumenenue 6nuscnei UK-cnexmpockonuu 0Jisi NPOSHOZUPOBAHUSL COCMABA 00pa3ya CUIbHO 02PAHU-
YeHO nepexpbImuemM NUK08 cuznala. Jisk ananuza CHeKmpaibHOU UHGOPpMayUlL, HenOCPEOCMEEHHO CEA3AHHOL
C U3YUAEMbIMU KOMROHEHMAMU, U 051 020, 4modbl cOelamb XeMOMempu4eckyio Mooeib Ooaee NOHSIMHOU,
npeonazaemcsi aleopumm He3asUCUMOU NPOEKYUU XApaKkmepucmux. Aneopumm npumenen K CneKkmpailbHOMy
ananuzy 00H020 obpasya Kykypysol. Hcciedosamnsl yuemoipe 0CHOBHbIX KOMNOHEHMA KYKYpY3bl — 81d2d, MACIO,
6enok u kpaxmai. Cnexmpvl HUCmvlX KOMIOHEHMO8 UCNONb308AHbL 8 HANPAGIECHUSAX NPOEKYULl OJIsL PA30dice-
Hust Oudxcnezo UK-cnexkmpa 00no2o obpasya KyKypy3sbvl, 3amem ROJYUEHbl Yembipe PA3I0AICeHHbIX CNeKmpd,
COOMBEMCMBYIOWUX YemblpeM CHeKMPam YUCmbIX KOMROHeHmo8. Fx coomuouieHus: onpeoeisiiuct ¢ UCHob-
306anHueM KOIDHUYLUEHMO8 KOppersyuu u nymem CPAGHEeHUs XapaKmepucmuieckux nuxkos. Jemaivno npo-
AHATU3UPOBAHBL KAPTUHBL MOJICKYIAPHO20 NO2NLOULCHUS, COOMBEMCMEYIOWIUe XaPAKMePUCMUYeCKUM NUKAM
RO2NOUWEHUSL KANCO020 PAZNIONCEHH020 chekmpa. Teopemuueckull anamus u dKCNePUMEHMAbHbLE Pe3)b-
Mmamvl NOKA3LIEAIOM, YMO AJI2OPUMM HEe3A8UCUMOL NPOEeKYUU XAPAKMEPUCUK MOXCem Oblmb NPUMEHEH K

** Full text is published in JAS V. 88, No. 3 (http://springer.com/journal/10812) and in electronic version of ZhPS
V. 88, No. 3 (http://www.elibrary.ru/title_about.asp?id=7318; sales@elibrary.ru).
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CHEeKMPATbHOMY AHATU3Y OMOETbHbIX 00pa3yos s u3gieuenus Oonee NOIHOU PUBUKO-XUMUYECKOU UHDOD-
Mayuu 0 KOMROHEHMAX U 00eCneueHUs MeoPemuyecKoll OCHOBbL 015t CO30AHUSL HAOEICHOU XeMOMEMPUEeCKOU
mooenu 6 bnudxcreti MK-obracmu ¢ omauyHotl sxcmpanoasiyueti U CmaduibHOCMbIO.

Knrwuesvle cnosa: cnexmpanvuvill ananus 6 O1udiCHell UHQPAKPAcHoU 0Oaacmu, 00UHOYHbLL 0Opaszey,
He3A68UCUMASL XAPAKMEPUCUYECKAsL RPOEKYUs, CNEKIMD YUCMbIX KOMAOHEHMO8, PA3ONCEHHbI CHEKMP.

Introduction. Near-infrared spectroscopy (NIRS) is a mainstream nondestructive technique that provides
convenient, high-efficiency, low-cost, and real-time online detection. It is widely used in fields such as agricul-
ture [1, 2], industry [3, 4], commerce [5, 6], biomedicine [7, 8], environmental monitoring [9], and aerospace
technology [10]. NIRS provides characteristic information about frequency overtones and combined vibrational
absorption frequencies of molecular hydrogen-containing groups (O—H, N—H, C-H, etc.). The more complex
the composition of the substance, the more likely the overlap of the characteristic spectral peaks. Therefore,
there is no one-to-one correspondence between near-infrared absorption peaks and the chemical components
from which they derive. The traditional chemometric model only provides the corresponding relationship be-
tween the spectrum and the content or properties of the substance without fully considering the underlying
physical and chemical significance in the spectrum, an approach that can yield unconvincing results [11, 12].
To extract more meaningful information about the target components from the spectrum, it is necessary to im-
prove the chemometric model, which is an active and challenging research area in the NIRS field [13].

In recent years, significant advancements have been made in methods of near-infrared spectroscopic anal-
ysis. Yang et al. [ 14] proposed a spectral peak detection algorithm, CWT-IS, based on the continuous wavelet
transform (CWT) and image segmentation (IS). This method can effectively eliminate the adverse effects
caused by noise and baseline, clarify the location of characteristic peaks, and facilitate subsequent spectral
analysis. Sarraguca et al. [15] verified the feasibility of applying net analyte signal (NAS) theory to the quality
control of solid dosage forms in the pharmaceutical industry, providing quantitative and qualitative analysis
of active product ingredients in different pharmaceutical formulations. Furthermore, the theory can improve
NIRS interpretability and has the advantages of high sensitivity and good selectivity. Lii et al. [16] presented
a synchronous two-dimensional correlation spectroscopy combining self-peak and cross-peak information
method for selecting the characteristic wavelengths, which introduced interpretability into variable selection
and greatly reduced the calculation complexity. Yu et al. [17] proposed a weighted clustering and pruning of
wavelength variables partial least squares (WCPV-PLS) method, which can improve the prediction accuracy
by reducing the number of wavelength variables. This method has been applied to the content prediction of
corn components and has strong robustness. Yang et al. [18] developed a new variable selection method named
moving-window partial least-squares coupled with sampling error profile analysis (SEPA-MWPLS). This
method shows good stability and reliability in variable selection, model establishment, and physicochemical
prediction using spectral datasets obtained from corn and pharmaceutical tablets. Yang et al. [19] used the
successive projections algorithm (SPA), information gain, and the Gini index to select the feature bands, com-
bined with a particle swarm optimization—extreme learning machine (PSO—ELM) model, to identify eight tree
species at the leaf level with a strong recognition effect. Jiang et al. [20] combined spectral multi-band selec-
tion with Savitzky—Golay preprocessing, the correlation coefficient method, and the synergy interval partial
least squares (siPLS) algorithm to quantitatively analyze corn components, which significantly simplified the
model complexity. Tao et al. [21] introduced an algorithm based on time—frequency domain fractal dimension
analysis, which combines wavelet multi-scale observation and measurement of the fractal self-similarity to
identify and analyze overlapping spectral peaks.

Despite the above progress, these analytical techniques remain limited to identifying spectral bands asso-
ciated with the target components, which inevitably leads to some information loss. In addition, the algorithms
can be influenced by the choice of initial values and the number of sample components, which need to be
determined from the sample characteristics. More importantly, methods for multi-component NIRS analysis
of single samples have not evolved. To extract spectral information with practical significance from the sub-
stance spectrum as completely as possible, and to establish a robust near-infrared spectral model, this study
introduces an independent characteristic projection (ICP) algorithm. This method converts the single sample
spectral data into a matrix, with each row containing information about a target component.

Using corn as a test sample, its moisture, oil, protein, and starch were selected for target component anal-
ysis. The pure component spectra of moisture, corn oil, corn protein, and corn starch were obtained by inde-
pendent experiments and regarded as the projection directions in the ICP algorithm. Four decomposed spectra
were then obtained from the corn spectrum, and the relationship between the pure component spectra and
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decomposed spectra was determined by calculating the correlation coefficient and matching their similar char-
acteristic peaks.

Theory and methods. Summary of ICP algorithm. The near-infrared spectrum of a substance comprises
mutually independent pure component spectra. Based on this property, the ICP algorithm converts single-
sample, one-dimensional spectral data, combined with the pure component spectrum matrix, into a decom-
posed matrix whose individual rows contain information about each target component. The process is similar
to a vector projection, which regards the pure component spectrum as a basis vector, also called the basis
spectrum. The ICP algorithm projects the original spectrum of the substance onto each basis spectrum.

The algorithm is an improved method based on independent component analysis (ICA). Traditional ICA
decomposes a signal comprising several independent sources into independent components. The disadvantage
of ICA is that such a decomposition cannot be conducted using only a single observation channel, but syn-
chronous observations must be made using multiple channels combined by different mixing ratios of each
source. Thus, traditional ICA cannot decompose single-sample, one-dimensional spectral data into spectra of
each target component. To address this shortcoming, the ICP algorithm improves the input matrix of ICA.

The input matrix of traditional ICA that is applied to near-infrared spectroscopic analysis [22] comprises
multiple sample spectral data. Suppose a;, b;, and ¢; represent the different mixing ratio coefficients of each
single component spectrum x; of the sample, where i = 1, 2, ... n. As the input for the ICP algorithm, only one
sample spectrum is retained. The mixing ratio coefficient of other input channels is set to 0 or 1, the latter
representing the pure component spectrum of the target components.

Principle of ICP algorithm. Figure 1 shows the flow diagram of the ICP algorithm. Here, s is the single
sample one-dimensional spectral data, and r; (i = 1, 2,... N—1) are the one-dimensional pure component spec-
tral data of known components, each of which have n wavelength numbers. These spectra are combined to
form a new matrix x containing N rows. There are N—1 sample target component, which is also the number of
decomposed layers in the algorithm. That is, R = [ri, 72, ..., rx-1]” constitutes a pure component spectrum
matrix. The specific steps of the ICP algorithm are as follows:

g —> Combination R

v

Spheroidization W

A 4

Decomposition V7 f——» p

Fig. 1. Flow diagram of the independent characteristic projection algorithm.

1. Construct the input matrix; s and R were combined to form a new matrix x = [s, 71, 72, ..., rx-1]".

2. Conduct spheroidization. Spheroidize x to obtain Z that contains orthogonal normalization for each
row. That is, Z= Wx, W is the spheroidization matrix.

3. Explain the shape of the weight matrix M; K(Z) contains the total fourth-order cumulants of Z, QM)
is a set of four-dimensional cumulant matrices obtained by weighting K(Z), and M is the weight matrix that
generates Q7. Construct a weight matrix M from a set of NxN symmetric basis matrices, whose elements M,
are defined as

T

€,e,, pP=9q,
1 T T
M, = ﬁ[epeq +eqep], p<q, €))

1 T T
ﬁ[epeq —eqep] , pP>q,
where e, and e, are Nx1 unit vector, all of whose elements equal 0 except for elements p and g, which are
equal to 1.

4. Choose a fourth-order cumulative matrix. Take M as the weight matrix, then construct the four-dimen-
sional cumulant matrix Qz(M) of Z:

N

[0, (M)], = éZZIKw (Z)m,, . @)
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where ij =1, 2, ..., N, Qz(M) is NxN matrix, Kjx(Z) is the four-dimensional cumulant of the 4, j, k, / compo-
nents of Z, and my,, is the p, g element of matrix M.

5. Conduct diagonalization. According to the definition of the four-dimensional cumulant matrix, Q,(M)
is a real symmetric matrix, so Q,(M) can be diagonalized as follows:

0AM) = VAV, 3)
where A(M) is a diagonal matrix whose diagonal elements contain the N eigenvalues of Oz(M). It is required
to obtain a matrix ¥ that can jointly diagonalize each Qz(M).

6. Obtain the output matrix. Finally, the decomposed matrix can be obtained as

P = Dx = VWx, 4)

where P = [p1, pa, ..., pn-1]" is the decomposed spectral matrix of s, and D is the conversion matrix.

Experimental. Instrument and reagents. Pure moisture, corn oil, corn protein, and corn starch reagents
were purchased from Shanghai Jinsui Bio-Technology Co., Ltd. A SupNIR-1500 series portable near-infrared
analyzer (Focused Photonics Inc., Hangzhou), was used to collect the pure substance spectra. Spectral data for
the corn samples were downloaded from http://www.eigenvector.com/data/Corn/index.html, which provides
near-infrared data of 80 corn samples measured using three different near-infrared spectrometers (designated
“m5,” “mp5,” and “mp6”). The samples contain approximately 10% moisture, 3.5% oil, 8.5% protein, and
64% starch. To simulate the transformation of spectral characteristic peaks when each single component of
corn is retained and removed, pure moisture, corn oil, corn protein, and corn starch reagents were prepared in
five mixtures in the proportions shown in Table 1.

TABLE 1. Relative Proportions of Components in Five Mixtures

Mixture Moisture Corn oil Corn protein | Corn starch
1 3 1 3 18
2 0 1 3 18
3 3 0 3 18
4 3 1 0 18
5 3 1 3 0

Experimental method. Spectral data (1100-2500 nm, 2 nm resolution) measured using “instrument m5”
were used for analysis. Four pure-substance samples and five prepared mixtures (Table 1) were assembled
separately into the J15-mm quartz reflection colorimetric dish and placed on the instrument probe succes-
sively for spectrum collection. Spectra were acquired at room temperature using an empty J15-mm quartz
reflection colorimetric dish as a reference and an average of 30 scans. The corn sample spectral data and the
spectrum of the mock corn sample mixture 1 is shown in Fig. 2. The high similarity between them indicates
that the mixture is representative of a real corn sample.
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Fig. 2. Near-infrared spectra of (1) corn sample and (2) mixture 1.

Results and discussion. Spectral analysis of mixtures. Figure 3 compares the spectra of mixtures 1-5 and
shows the transformation of characteristic peaks when individual components of corn are removed. The left
ordinate axis corresponds to the mixture 1 spectrum, and the right axis corresponds to the spectra of mixtu-
res 2-5. As shown in Table 1, mixture 1 is a mock sample prepared using all the corn components, while
mixtures 2, 3, 4, and 5 contain all components except moisture, oil, protein, and starch, respectively.
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Fig. 3. Spectral comparison of mixture 1 with (a) mixture 2, (b) mixture 3, (¢) mixture 4,
and (d) mixture 5.

In Fig. 3a the absorbance difference between the hydroxyl absorption band at 1940 nm (assigned to mois-
ture) and the adjacent peak is visibly smaller in the spectrum of mixture 2 compared with that of mixture 1,
consistent with the omission of the moisture component from mixture 2. In Fig. 3d, the methylene absorption
bands assigned to oil at 1725 and 1762 nm are visible in the spectrum of mixture 5 because of the absence of
the starch component; other absorption bands assigned to starch at 1930 and 2100 nm in the spectrum of
mixture 1 are not seen in mixture 5, consistent with the removal of this component. After removing individual
corn components, the characteristic peaks of the remaining sample components are not seen in the spectrum
except in three obvious regions in Fig. 3. This is because the spectral peaks strongly overlap, and, in particular,
the low characteristic absorption corresponding to low-abundance components is difficult to observe in the
spectrum. As shown in Fig. 3b,c, no visible spectral changes are observed when the low-abundance oil and
protein components are individually removed from the mock corn sample. However, the physicochemical
information about each sample component is contained in the spectrum.

Figure 4 shows the difference spectra of mixture 1 and mixtures 2—5 and compares them with the corre-
sponding spectra of pure corn components. As shown in Fig. 4, the difference between the spectra of mixture
1 (the mock corn sample) and mixture 2 (the mock corn sample without moisture) is similar to the moisture
spectrum; the difference spectrum therefore provides physicochemical information about the sample moisture.
By analogy, the difference between mixtures 1 and 3, 1 and 4, and 1 and 5, can provide information about the
oil, protein, and starch components, respectively.

It is clear that the sample spectrum contains physicochemical information about each component, but this
information cannot be clearly observed because of spectral overlap. The ICP algorithm proposed herein addresses
this issue by extracting the pure component physicochemical information in the form of decomposed spectra.

Component information corresponding to each decomposed spectrum. The spectra of pure moisture, corn
oil, corn protein, and corn starch components were acquired and used as the projection directions, and the
spectra of the corn samples were then decomposed to obtain physicochemical information. Because there are
four projection directions, the number of decomposed layers in the algorithm was set to 4. Using the ICP
algorithm, four decomposed spectra representing the individual moisture, corn oil, corn protein, and corn
starch components were obtained and numbered by their row order in the decomposed matrix.

After the decomposed matrix was obtained, the relationship between the four decomposed spectra and the
spectra of the pure components was determined by calculating the correlation coefficient across the whole
spectrum and matching similar characteristic peaks. The comparison between the decomposed spectrum and
the pure component spectrum is shown in Fig. 5. The vertical coordinate of the decomposed spectrum is the
absorption coefficient.
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Fig. 4. Comparison of the difference spectra obtained from the mixtures shown in Table 1 and the corresponding
pure component spectra: a) difference spectrum of mixtures 1 and 2; b) moisture spectrum; c¢) difference spectrum
of mixtures 1 and 3; d) oil component spectrum; ¢) difference spectrum of mixtures 1 and 4; f) protein component

spectrum; g) difference spectrum of mixtures 1 and 5; h) starch component spectrum.
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Fig. 5. Comparison of (a) decomposed spectrum 1 and corn protein spectrum (5); (b) decomposed spectrum 2
and corn oil spectrum (6); (¢) decomposed spectrum 3 and corn starch spectrum (7); (d) decomposed spectrum
4 and moisture spectrum (8).

The highest correlation coefficient (#) was obtained for the decomposed spectrum 1 and the corn protein
spectrum, reaching 0.95. Figure 5a confirms that these spectra contain several identical characteristic peaks
and share similar spectral morphology, which shows that the decomposed spectrum 1 provides information
about the protein component of the corn sample. Similarly, the decomposed spectra 2, 3, and 4 corresponded
to the spectra of corn oil (# = 0.5867), corn starch (» = 0.2231), and moisture (» = 0.4722), respectively.

Protein is a polypeptide chain comprising amino acids and forms a spatial structure by winding and fold-
ing. In Fig. 5a, decomposed spectrum 1 and the corn protein spectrum have similar characteristic absorption
peaks in the 1400-1600 and 1900-2400 nm regions. Consistent with the structure of protein, 1460, 1510, and
1570 nm are the first-order frequency-doubling bands of amide N—H fundamental symmetric stretching vibra-
tion, 1980 nm is the combined band of the amide N—H antisymmetric stretching and in-plane bending vibra-
tions, 2050 nm is the combined band of N-H and C=O stretching vibrations, 2174 nm is the combined band
of N—H bending and C—N stretching vibrations, 2290 nm is the C=0 fundamental stretching vibrational ab-
sorption band, and 2345 nm is the combined spectral band of symmetric stretching and bending vibrations of
protein side chain methylene C—H groups [23]. These spectral bands belong to the similar characteristic ab-
sorption of decomposed spectrum 1 and the corn protein spectrum.
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Vegetable oil is rich in many fatty acids. In Fig. 5b, decomposed spectrum 2 and corn oil spectrum have
similar characteristic absorption peaks in the 1100-1300, 1700-1800, and 2100-2200 nm regions. According
to the vegetable oil component characteristic, 1170 nm is the second-order frequency-doubling band of olefin
C—H fundamental stretching vibration, 1211 nm is the second-order frequency-doubling band of methylene
C-H fundamental stretching vibration, 1725 nm is the first-order frequency-doubling band of methylene C—H
fundamental stretching vibration, 1762 nm is the first-order frequency-doubling band of methylene C—H fun-
damental symmetric stretching vibration, and 2140 nm is the combined spectral band of C—H and C=O stretch-
ing vibrations [23]. These spectral bands belong to the similar characteristic absorption of decomposed spec-
trum 2 and the corn oil spectrum.

Starch is polymerized from glucose molecules; its chemical formula is (CsH10Os),. In Fig. 5c, decom-
posed spectrum 3 and the corn starch spectrum have similar characteristic absorption peaks in the 1700-1800,
1900-2000, 2050-2150, and 2200-2400 nm regions. Combined with starch structure, 1780 nm is the first-
order frequency-doubling band of methylene C—H fundamental stretching vibration, 1930 nm is the O—H fun-
damental stretching vibrational absorption band, and 2100 nm is the third-order frequency-doubling band of
the polymer C=0-O fundamental stretching vibration. Features at 2280 and 2322 nm correspond to the com-
bined spectral bands of C—H stretching and deformation vibrations [23]. These spectral bands belong to the
similar characteristic absorption of decomposed spectrum 3 and the corn starch spectrum.

The main functional group of moisture is the O—H bond. In Fig. 5d, the decomposed spectrum 4 and the
moisture spectrum have similar characteristic absorption peaks in the 1400—1500 and 1700—1800 nm regions.
Combined with the molecular structure of moisture, 1410 nm is the first-order frequency-doubling band of
O-H fundamental stretching vibration, and 1790 nm is the combined spectral band of O-H stretching and
bending vibrations [23]. These spectral bands belong to the similar characteristic absorption of decomposed
spectrum 4 and moisture spectrum.

Analysis using the ICP algorithm showed that the characteristic peaks in the decomposed spectrum can
be attributed to the different absorption patterns of each component’s functional groups, which indicates that
the method for NIRS analysis of single sample is more explanatory than the traditional chemometric model.
In addition to the above-mentioned characteristic absorption bands, the absorption peaks at other wavelengths
are considered to result from the overlap of various substance molecule absorption patterns.

Comparison of the corn sample spectrum and each decomposed spectrum. Comparing the near-infrared
spectrum of the corn sample with the four decomposed spectra obtained using the ICP algorithm (Fig. 6), it
can be seen that the characteristic absorption of some sample components is directly reflected in the corn
sample spectrum. Some characteristic absorption bands overlap with or are close to those of other components,
which increases the absorbance in this region but does not reflect the physicochemical information of this
component in the spectrum. Other bands are obscured by more intense nearby characteristic absorption bands
associated with higher-abundance sample components.

The characteristic absorption bands belonging to protein at 1460 and 1570 nm, oil at 1211 and 1725 nm,
and starch at 1930, 2100, and 2322 nm, are clearly observed in the spectrum without interference from other
overlapping or adjacent characteristic absorption bands (case 1).

The adjacent characteristic absorption bands belonging to protein at 2290 nm and to starch at 2280 nm
are close to absorption peak at 2288 nm observed in the spectrum of the corn sample, which suggests that the
characteristic absorption at 2288 nm is caused by two components, protein and starch (case 2). A similar
situation also occurs for the 1762, 1780, and 1790 nm peaks of oil, starch, and moisture, respectively, yielding
the characteristic absorption at 1774 nm in the corn sample spectrum.

The characteristic absorption of starch component mainly appears in the 1700-2400 nm region. The high
abundance of starch in the sample obscures characteristic peaks of lower-abundance components in this region
(case 3). For example, the characteristic absorption band at 1980 nm belonging to protein is obscured by the
nearby starch absorption band at 1930 nm. Similarly, the characteristic absorption peaks of protein at 2050,
2174, and 2345 nm, and of oil at 2140 nm, are also obscured. Decomposition of the spectrum of the corn
sample shows that the near-infrared spectrum of a substance is a superposition of the individual absorption
patterns of pure components. The decomposed spectra of the pure components within the corn sample can be
obtained using the ICP algorithm, and physicochemical analysis of each underlying component in the sub-
stance spectrum can be made, which provides a theoretical basis for establishing a more interpretive model of
near-infrared spectral analysis.
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Fig. 6. Comparison of (dotted line) corn spectrum with (solid line) decomposed spectrum 1, decomposed
spectrum 2, decomposed spectrum 3, and decomposed spectrum 4.

Conclusions. An independent characteristic projection algorithm for near-infrared spectral analysis was
proposed. The analytical method was used to project the original sample spectrum onto the different pure
component spectra, and the obtained decomposed spectra were compared with the target component infor-
mation to extract characteristic information about the vibrational absorptions of different molecular hydrogen-
containing groups in the relevant wavelength range. The feasibility of the method was verified by investigating
the physicochemical information of moisture, corn oil, corn protein, and corn starch in corn samples. The
experimental results suggest that the algorithm has no limit on the number of input sample spectra and can be
applied to the near-infrared spectral analysis of a single sample. The decomposition of each sample spectrum
is independent, in that the spectral peaks of each target component can be effectively separated and analyzed.
Moreover, it is not necessary to determine the algorithm parameters (the number of decomposed layers) based
on the sample characteristic, and the parameters are only related to the preset projection directions. In addition,
compared with the traditional spectral analysis method to find the most relevant wavelength region of the
sample spectrum, the ICP algorithm ensures the integrity of the component information to the greatest extent,
which could provide a theoretical basis for establishing a robust chemometric model. The algorithm may also
be of value for spectral analysis research in other fields.
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