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SIMULATION OF A BLIND HYPERSPECTRAL-UNMIXING ALGORITHM
INCORPORATING SPATIAL CORRELATION AND SPECTRAL SIMILARITY
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For hyperspectral unmixing, a multi-scale spatial regularization method based on a modified image seg-
mentation algorithm to generate super-pixels is proposed in which the super-pixels are used to extract con-
textual information from spatial correlations and spectral similarity in hyperspectral images (HSIs). The un-
mixing problem is decomposed into two simple unmixing subproblems regarding the approximate super-pixels
and the original pixels. The unmixing results of these two subproblems have spatial-correlation constraints.
Introducing a novel regularization term to constrain the abundance matrix to promote the homogeneous abun-
dances helps in making effective use of the spatial correlations and spectral similarity of the abundances from
HSIs. Experimental results obtained from synthetic data demonstrate that the proposed algorithm yields an
accuracy greater than other conventional methods.

Keywords: blind hyperspectral unmixing, hyperspectral image, image segmentation, multi-scale spatial
regularization.
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s 2unepcnekmpanbHo20 HeCMeuU8anUs NPeoda2aemcs MHO2OMACUMAOHbLIL Memoo NPOCIPAHCEEH-
HOU pe2yIapu3ayuy, OCHOBAHHbIU HA MOOUDUYUDOBAHHOM ANCOPUMME CE2MEHMAYUU U300PAICEHUsL OISl 2eHe-
payuu cynepnuxceietl, 8 KOmopom CynepRuKcend UCROAb3YIOMCs 0/ U3G/leHeHUsl KOHMEeKCMHOU UHpopmayuu
U3 NPOCMPAHCMBEHHBIX KOPPEISAYUL U CREKMPALbHO20 CXO0CMEAd 6 2UNePCHEeKMPAbHbIX U300PANCEHUAX
(HSI). Tlpobrema pazdenenusi paznodxcena Ha 08e Npocmoie 3a0a4l, KAcaowuecs NpubIuUUmMenbHbix cynep-
nukcenell u UCXoOuvlx nukcenei. Pesynomamol pazdenenus smux 3a0ay umeiom 0SpaHuyeHuss NPoCmpaH-
cmeennoll koppensayuu. Beedenue H06020 wiena pe2yiapuzayui, 02paHudusaowe20 Mampuyy YUcieHHOCmuy
07151 0becneyerst 0OHOPOOHOCIU YUCTAEHHOCMU, NOMO2aen I PeKmuUeHO UCNOIb308aAMb NPOCIPAHCGEHHbIE
KOppensiyuu u CneKmpaibHoe nodobue yuciennocmu no oannvim HSI. Dxcnepumenmanvivie pesyivmamot,
ROJYHeHHble HA OCHOBE CUHMEMUYECKUX OAHHbLX, OEMOHCMPUPYIom 6ojiee 8bLCOKYIO MOUYHOCHb NPEONONCEH-
HO20 Ai20PUMMA NO CPABHEHUIO ¢ MPAOUYUOHHBIMU MEMOOAMU.

Knrouessle cnosa: cienoe cunepcnekmpaibHoe HeCMeuwuane, 2UNnepCneKmpaibHoe u3oopajicenue, ces-
MEHMAayust U306paNCceHUst, MHO2OMACUIMAOHAsL NPOCMPAHCMEEHHAsL Pe2YISAPU3AYUSL.

**'Full text is published in JAS V. 88, No. 3 (http://springer.com/journal/10812) and in electronic version of ZhPS
V. 88, No. 3 (http://www.elibrary.ru/title_about.asp?id=7318; sales@elibrary.ru).
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Introduction. A hyperspectral image (HSI) simultaneously contains spatial and spectral information of a
target that is represented by a three-dimensional data cube. For this reason, the hyperspectral imaging system
is widely used for target recognition and detection by military, industrial, agricultural, and environmental
agencies [1, 2]. However, because spatial resolutions of the device sensors are low, the spectral signature of
each pixel in a hyperspectral image is typically “mixed” — a linearly combined spectral reflectance of the
component materials. Therefore, the purpose of hyperspectral unmixing (HU) is to decompose the spectral
signature of each mixed pixel into its component compositions of pure signatures from each single material,
called an “endmember,” and its corresponding compositional fractions, called “abundances” [1]. At present,
many different unmixing strategies have been proposed, including geometrical-based methods, dictionary-
based sparse regression, and statistical-based methods.

Nonnegative matrix factorization (NMF) [3] is an ideal choice for linear unmixing because, under the
assumption of no pure pixels exiting, it accomplishes synchronous estimations of the endmembers and their
corresponding abundances provided with the non-negative characteristics. Unfortunately, its performance is
limited by the non-convexity of the NMF objective model and noise interference. To solve these problems,
some NMFs with various constraint methods have been taken into account for HU, including the minimum-
distance-constrained (MDC) NMF (MDCNMF) method [4], in which differences between endmembers are
controlled during the iteration. As one constraint, Li,-sparse regularization has been adopted in the sparsely-
constrained NMF method [5]. However, these constrained NMF methods ignore rich and useful spatial-context
information in HSIs, which is an important factor in reducing errors and instabilities during unmixing.

With the spatial correlations contained in HSIs, combining the useful spatial context information during
the unmixing process improves the performance of HU. The total variation (TV) regularization constraint
[6, 7], one of the more well-known constraints applied to HU methods incorporating spatial information, is
introduced into some sparse unmixing methods to promote spatial piecewise smoothness in the abundances;
however, the TV methods only consider spatial correlations between neighboring pixels while ignoring spec-
tral similarity, which is also an important property of HSIs. In addition, the spatial neighborhood is described
as a regularly shaped subregion (square window), which obviously does not conform to reality; hence, it is
difficult to extract more complex spatial information from HSIs.

A new blind source unmixing method is proposed. Referred to as multi-scale spatial regularization (MSR)
NMF (MSRNMF), it incorporates a spatial correlation constraint and a spectral similarity constraint. A multi-
scale spatial transformation is defined that involves a modified image segmentation algorithm [8] that is used
to segment HSI into a group of local spatial subregions (called super-pixels) with irregular shapes. The super-
pixels are used to extract information concerning spatial correlations and spectral similarity in HSIs. The HU
problem is decomposed into two subproblems to be resolved jointly over two spatial scales: one is the original
scale, and the other a coarse scale constructed by super-pixels. A novel regularization term is proposed to
extract both the spatial-correlation and spectral-similarity information.

Calculation. To begin giving the specific details of the proposed MSRNMF algorithm, we explain how to
consider spatial priors when applying the MSR function during HU based on a linear mixing model (LMM).
Next, a specific iterative optimization is described, and a specific implementation of the proposed method is
presented.

Linear mixing model. The algorithm performs HU based on LMM ignoring multiple scattering [2, 3].
Specifically, with L denoting the spectral dimension and N the number of pixels, the hyperspectral LMM is
described by matrix P = [pi, pa, ..., py]e RPN obtained from

P=WZ+E, (1)
where W = [wi, wa, ..., wy]eREM denotes the endmember matrix with M the number of endmembers,
Z=[C1, 8, ..., Cn]eRMM the abundance matrix, composed of N abundance vectors &; = [z1, z2i, ..., zui]” of pixel

pi, and E€ REV the noise matrix. The fractional abundance should meet two physical constraints: the abundance
nonnegative constraint (ANC) z,,, 20 (i=1, ..., N; m=1, ..., M) and the abundance sum-to-one constraint (ASC)

Sz =1(i=1..,N).

Multi-scale spatial regularization NMF. The proposed MSRNMF unmixing scheme has two steps. First,
using a multi-scale transformation method, the original-scale image is converted into a coarse-scale image
composed of super-pixels by extracting spatial-correlation and spectral-similarity information between
neighboring pixels. The spectral signatures of the super-pixels are then unmixed by solving the sparse-
unmixing problem. Next, a conjugate transform is applied to the estimated coarse-scale abundances to convert
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the unmixed results of the coarse scale back into those of the original scale using a novel norm penalty term
to promote spatial correlations and spectral similarities.

Of importance is the suitable choice of the multi-scale transformation. In a physical sense, the essential
purpose of this transformation is to segment the HSI adaptively and obtain super-pixels [9]. Specifically,
1) pixels that are spectrally similar and spatially adjacent are grouped (not necessarily uniformly or regularly);
2) pixels that belong to different features are separated to preserve the irregular edges and discontinuities
among the subregions, and 3) the multi-scale transformation must be related to the spectral signatures.

To explore spatial correlation while considering the spectral similarity among pixels, the traditional image
segmentation algorithm was adapted for the HSI in constructing the multi-scale transformation. A modified
simple linear iterative clustering (SLIC) algorithm [10] (not described here) was adopted to generate super-
pixels from the HSIs. The spectral reflectance of the super-pixel formed by the multi-scale transformation is
then the average value of all pixel reflectance in the segmented area. The conjugate transform is used to attrib-
ute super-pixel values to all pixels located in the corresponding area.

Through this multi-scale transformation, two coarse-scale variables are obtained, namely, Pce R“® and
Zce RME),

multi-scale transform multi-scale transform
| Jp— > Pc, 7 — Ze, 2)

which are respectively the spectral and the abundance matrices of the super-pixels; here K (K<N) denotes the
number of super-pixels. The sparsity-constraint unmixing problem of the super-pixels in the coarse scale is
expressed as
L min fe (W.Ze3Pe) =1/ 2)|[Pe - WZc |} +2g(Zc) - 3)
Here, parameter A controls the contribution of the sparsity function, g(Zc), which is a sigmoid measurement [11]
implementing the abundance sparsity constraint and defined as
1 X4 N 2
£ )
where a is a positive parameter that controls the trade-off between sparsity and uniformity. The choice a =20
performs well in approximating the Lo norm [11].
The abundance matrix Zc at the coarse scale, which is further used to normalize the unmixing problem at
the original scale, is obtained after solving (3). Consequently, to transform the estimated coarse-scale abun-
dance matrix Zc back to the original scale, a conjugate transformation is introduced,

Z conjugate transform 5
Zc N 5)

where ZpeRMM represents the approximation of the original-scale abundances, which captures the spatial
correlations and spectral similarity between neighboring pixels and is used as a constraint on the abundance
matrix Z. Note that this conjugate transformation is not simply an inverse operation of the multi-scale spatial
transformation, i.e., Zp #Z. After the above conjugate transformation, a novel MSR as well as a sparsity reg-
ularization is introduced into the NMF optimization of the original-scale image, so that pixels that belong to
the same local area should have similar abundances. The objective function of the unmixing optimization
problem of the original-scale image is

. 1 2 - 2

Jmin 1o (W.Z:P)=—|P-W2zfj + 2|(2- 2, Q| +ne(2). (©)
where y and p denote regularization parameters, and Q = diag(q, ..., gn) denotes the weight parameter matrix.
Its diagonal elements represent the degree to which each original pixel contributes to spatial similarity regu-
larization, which is measured using the reciprocal of the spectral-spatial distance D; [10], considering spatial

correlation and spectral similarity, simultaneously. Mathematically

D, =\ +(d, sw)

T—
XX

d,= cos™ | —L—— 1|, d = \/(ml. —m)* +(n, —n)*,

||xf||2 |.X'||2

where x; denotes the spectral reflectance of the jth pixel in the subregion, x the spectral reflectance of the
super-pixel in the subregion, [m, n]” the coordinates of the spatial clustering center in the subregion,
and [m;, n;]” the coordinates of the ith pixel in the subregion. Moreover, sw is a size parameter determining

(™)




508-4 ABSTRACTS ENGLISH-LANGUAGE ARTICLES

the size of the subregion, and w;, the weighting parameter trading off the spectral similarity and spatial simi-
larity, which is set to 0.3 because in practice spectral similarity is generally more important than spatial corre-
lations. By introducing this weight parameter matrix, it is possible to avoid losing spatial details, such as target
details and obvious boundaries.

Optimization algorithm. Noting the requirements of the block-coordinate-descent algorithm, and for the
objective functions (3) and (6), the optimization problem consists of three subproblems, each involving the
iterative updating of 1) the coarse-scale abundance Zc; 2) the original-scale abundance Z; and 3) the
endmember matrix W. To guarantee elements of W and Z are within a reasonable range during the iteration,
the ASC must be taken into account. In the iterative process, before the abundance matrix is updated, the
endmember matrix and the two spectral matrices are augmented [5, 11]:

_ [P W [ ®)
P_LSLTJ W{sﬂj PC_LSIJ’

where 1y, 1y, and 1k are all-one vectors of size N, M, and K, respectively, and 3 is a positive factor controlling
the effect of the ASCs. In experiments, its value was set to 15.

For each subproblem, the projection gradient descent method is used to update each unknown variable to
impose the ANC. An economical but effective function, max(0, x), ensures a nonnegative result by setting
negative components to zero. The update rule is then expressed as

2. Carg min fo (W.Zc:Pc) = max (0’ 2 -V, e (W(f)’ z..b. )) , ©)
Z(Hl) «—arg anigl /o (W, Z;P) = max (0, Z(t) -,V (W(t),Z(t);f’)) , (10)
W(M) <« arg rvrvnré /o (W, Z;P) = max (0, W(t) - Vw/p (W(t),Z(Hl);P)) , (1)

where i, L2, and ps denote the small learning rates determined by the Armijo algorithm [20], and ¢ denotes
the rth iteration. The gradients of the corresponding variables are

\PL (W,Zc;f’c ) =(2A/M)aexp(—aZc)/ (1 +exp(—aZc ))2 +WI(WZ. -P.), (12)
Vo (W,Z;P) =W (WZ - P) +Y(Z—Z)Q+(2u/M)aexp(-aZ) /| (1 + exp(-aZ))* (13)
Vw/o(W,Z;P)=(WZ-P)Z". (14)

For optimization during MSRNMF, some specific implementation issues need to be considered. One con-
cerns the initialization of matrices W and Z. VCA [12]-FCLS [13] is used for initialization. Another concerns
the exact number of endmembers, which is assumed to be already known in our experiments. The stopping
rule for the iteration requires the gradient error of the function (7) to be less than 0.001 of the initial value or
the number of iterations is more than 200.

The specific steps of the spectral unmixing method based on our MSRNMF approach are summarized as:

Input: P = [p1, pa, ..., pn]eREN_ Ay, .

Multi-scale transform:

1. Generate the spectral matrix Pc at coarse scales using multi-scale transform.
2. Calculate the weight of each pixel g; = 1/D; on the basis of (7), and generate weight matrix
Q= diag(ql, ceey qN).

Initialization:

Initialize the endmember matrix W and abundance matrix Z and Zc.

Iterate until convergence:

1. Update Zc according to (9).

2. Update Z according to (10).

3. Update W according to (11).

Return: W and Z.
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Results and discussion. The unmixing performance of our MSRNMF and some state-of-the-art unmixing
methods (VCA-FCLS, VCA-SUnSAL-TV [7], MDC-NMF [4], and Li,-NMF [5]) were compared and evalu-
ated using two simulated datasets (all codes are implemented on MATLAB R2018b). To evaluate quantita-
tively and compare the unmixing performance, two evaluation metrics were applied, namely, spectral angular
distance (SAD) and root-mean-square error (RMSE), to evaluate the accuracy of the endmember estimation
and abundance inversion, respectively. Three simulated experiments using two synthetic datasets were per-
formed to assess and compare the effects of different multi-scale transform methods, the signal-to-noise ratio
(SNR) of noise, and the endmember numbers on the performance of unmixing.

To determine the best parameter settings for the MSRNMF algorithm, a grid search was performed on
each dataset, and the parameter values giving the best unmixing results were selected; the values assigned
were: A=p=0.10, and y = 0.05, and the size parameter sw of the modified SLIC algorithm was set to 5. For
the other algorithms, the parameter values were set to those given in the corresponding references. In this
paper, all experimental results are from the average of 30 random tests.

Simulation experiments on synthetic data 1. Synthetic data 1 was built comprising 221 spectral channels
and 100x100 pixel images. The endmembers were composed of nine spectra (EN1-EN9) randomly selected
from the USGS spectral library (Fig. 1). The generation of the corresponding abundances for each endmember
was the same as that described by Hendrix and colleagues [14]. Specifically, under nonnegative and additive
constraints, the k&~-means algorithm and Gaussian filtering were used to generate the corresponding abundance
maps. In addition, noise with different SNRs was added to the synthetic image data.
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Fig. 1. Endmember spectra (EN1-EN9) and corresponding abundance images for synthetic data 1.

Simulation experiments with different multi-scale transformation methods. This experiment was designed
to compare and analyze the effects of different multi-scale transformation methods on the performance of
unmixing. Three different methods were selected to generate super-pixels and complete multi-scale transfor-
mation on synthetic data 1: the k~-means method, which only considers spectral similarity; the grid method,
which only considers spatial correlations; and the modified SLIC method, which considers both spectral sim-
ilarity and spatial correlations. This experiment used synthetic data 1 polluted with 25 and 35 dB, Gaussian
white noise. The proposed modified SLIC method was compared with the other methods in terms of the SAD
and RMSE average values and corresponding standard deviations (Table 1). Clearly, our MSRNMEF based on
the modified SLIC method achieved a higher performance than the MSRNMF based on the k-means and grid
methods. Because the modified SLIC method considering the spatial correlation and spectral similarity among
pixels is a natural and adaptive representation of the scene, better unmixing results were obtained.

TABLE 1. MSRNMF Unmixing Performance Based on Different Multi-Scale Transformation Methods

SNR, dB Method SAD RMSE
25 SLIC HSI | 0.0088(0.0009) | 0.0685(0.0041)
GRID 0.0118(0.0035) | 0.0886(0.0088)

KNN 0.0104(0.0010) | 0.0711(0.0043)

35 SLIC HSI | 0.0052(0.0009) | 0.0301(0.0042)
GRID 0.0099(0.0033) | 0.0474(0.0113)

KNN 0.0075(0.0009) | 0.0319(0.0049)
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Robustness analysis of noise. The aim of this experiment was to compare and evaluate the noise robust-
ness of the algorithms in application to synthetic data 1 polluted by Gaussian noise with different SNRs ranging
from 20 to 45 dB in 5-dB intervals. Figure 2 shows the average SAD and RMSE values and corresponding
standard deviations of different algorithms. Generally, under the same noise and SNR conditions, our
MSRNMF unmixing method performed better than other unmixing methods in terms of accuracy of the
endmember estimation and abundance inversion. Moreover, as SNR decreased, the average performance of
all algorithms for unmixing decreased. However, because of the spatial multi-scale regularization constraints
introduced, the spatial correlations and spectral similarity of the HSIs were included in the optimization sys-
tem. The proposed method still performed well at low SNRs, thereby demonstrating a better robustness to noise.

SAD a RMSE b
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Fig. 2. Performance comparison of the algorithms at different SNR of Gaussian noise: a) SAD and b) RMSE.

Simulation experiments on synthetic data 2. Synthetic data 2, comprising 221 spectral bands and
100x100 pixel images, was generated using the MATLAB HSI synthesis simulation toolbox. To generate
synthetic data 2, we randomly selected M (an odd integer from range 5—13) true endmember spectra from the
USGS spectral library. The corresponding abundance maps were generated using the toolbox by selecting a
spherical Gaussian field function and smoothly filtering with a nonnegative and additive constraint.

Sensitivity analysis to the number of endmembers. With the different HSIs, the number of endmembers is
complex and variable, and the number of different endmembers may produce some uncertain effects when
applying the algorithm. In this experiment, synthetic data 2 was used to analyze and compare the performance
of each unmixing algorithm when the number of endmembers was varied from 5 to 13, and the SNR of the
Gaussian white noise was fixed at 25 dB (Fig. 3). Generally, as the number of endmembers increased, the
complexity of unmixing increased, whereas the accuracy of unmixing decreased. Each algorithm employed
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Fig. 3. Performance comparison of the algorithms with different numbers of endmembers (from 5 to 13):
a) SAD and b) RMSE.
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obtained better accuracy when the number of endmembers was relatively small. As the number of endmembers
increased, the proposed method did not decrease the accuracy of the endmember estimation and abundance
inversion, thus demonstrating its superiority. These differences were attributed to the proposed method, which
contains more comprehensive constraint information, spatial multi-scale constraints, and abundance sparsity
constraints.

Conclusions. A novel blind unmixing method for hyperspectral unmixing called MSRNMF was pro-
posed. The unmixing problem was decomposed into two simples but correlated unmixing problems in the
coarse-scale and original-scale image domains. Based on the modified simple linear iterative clustering image
segmentation method, multi-scale spatial regularization constraint was proposed, which introduced wealth
spatial priors and sparse priors as constraints during the unmixing procedure. During unmixing, the pixels in
the neighborhood subspace group have a certain spatial correlation in abundance. Thus, MSRNMF captured
the spatial correlation and spectral similarity in each pixel effectively. The results of the simulation experi-
ments using synthetic data demonstrated that this method has advantages over other methods when signal-to-
noise ratio is low and the number of endmembers large. Furthermore, a modified hyperspectral image segmen-
tation algorithm was used to segment the hyperspectral image into several irregular shape subregion groups
effectively, thereby providing an important improvement over traditional joint spatial information unmixing
methods. Therefore, this method indicates broad potential applications in the field of hyperspectral unmixing.

This research was funded by the National Natural Science Foundation of China (grant No. 61575015).
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