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For hyperspectral unmixing, a multi-scale spatial regularization method based on a modified image seg-

mentation algorithm to generate super-pixels is proposed in which the super-pixels are used to extract con-
textual information from spatial correlations and spectral similarity in hyperspectral images (HSIs). The un-
mixing problem is decomposed into two simple unmixing subproblems regarding the approximate super-pixels 
and the original pixels. The unmixing results of these two subproblems have spatial-correlation constraints. 
Introducing a novel regularization term to constrain the abundance matrix to promote the homogeneous abun-
dances helps in making effective use of the spatial correlations and spectral similarity of the abundances from 
HSIs. Experimental results obtained from synthetic data demonstrate that the proposed algorithm yields an 
accuracy greater than other conventional methods. 

Keywords: blind hyperspectral unmixing, hyperspectral image, image segmentation; multi-scale spatial 
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Для гиперспектрального несмешивания предлагается многомасштабный метод пространствен-
ной регуляризации, основанный на модифицированном алгоритме сегментации изображения для гене-
рации суперпикселей, в котором суперпиксели используются для извлечения контекстной информации 
из пространственных корреляций и спектрального сходства в гиперспектральных изображениях 
(HSI). Проблема разделения разложена на две простые задачи, касающиеся приблизительных супер-
пикселей и исходных пикселей. Результаты разделения этих задач имеют ограничения простран-
ственной корреляции. Введение нового члена регуляризации, ограничивающего матрицу численности 
для обеспечения однородности численности, помогает эффективно использовать пространственные 
корреляции и спектральное подобие численности по данным HSI. Экспериментальные результаты, 
полученные на основе синтетических данных, демонстрируют более высокую точность предложен-
ного алгоритма по сравнению с традиционными методами.  

Ключевые слова: слепое гиперспектральное несмешивание, гиперспектральное изображение, сег-
ментация изображения, многомасштабная пространственная регуляризация. 
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Introduction. A hyperspectral image (HSI) simultaneously contains spatial and spectral information of a 
target that is represented by a three-dimensional data cube. For this reason, the hyperspectral imaging system 
is widely used for target recognition and detection by military, industrial, agricultural, and environmental 
agencies [1, 2]. However, because spatial resolutions of the device sensors are low, the spectral signature of 
each pixel in a hyperspectral image is typically “mixed” – a linearly combined spectral reflectance of the 
component materials. Therefore, the purpose of hyperspectral unmixing (HU) is to decompose the spectral 
signature of each mixed pixel into its component compositions of pure signatures from each single material, 
called an “endmember,” and its corresponding compositional fractions, called “abundances” [1]. At present, 
many different unmixing strategies have been proposed, including geometrical-based methods, dictionary-
based sparse regression, and statistical-based methods. 

Nonnegative matrix factorization (NMF) [3] is an ideal choice for linear unmixing because, under the 
assumption of no pure pixels exiting, it accomplishes synchronous estimations of the endmembers and their 
corresponding abundances provided with the non-negative characteristics. Unfortunately, its performance is 
limited by the non-convexity of the NMF objective model and noise interference. To solve these problems, 
some NMFs with various constraint methods have been taken into account for HU, including the minimum-
distance-constrained (MDC) NMF (MDCNMF) method [4], in which differences between endmembers are 
controlled during the iteration. As one constraint, L1/2-sparse regularization has been adopted in the sparsely-
constrained NMF method [5]. However, these constrained NMF methods ignore rich and useful spatial-context 
information in HSIs, which is an important factor in reducing errors and instabilities during unmixing. 

With the spatial correlations contained in HSIs, combining the useful spatial context information during 
the unmixing process improves the performance of HU. The total variation (TV) regularization constraint  
[6, 7], one of the more well-known constraints applied to HU methods incorporating spatial information, is 
introduced into some sparse unmixing methods to promote spatial piecewise smoothness in the abundances; 
however, the TV methods only consider spatial correlations between neighboring pixels while ignoring spec-
tral similarity, which is also an important property of HSIs. In addition, the spatial neighborhood is described 
as a regularly shaped subregion (square window), which obviously does not conform to reality; hence, it is 
difficult to extract more complex spatial information from HSIs.  

A new blind source unmixing method is proposed. Referred to as multi-scale spatial regularization (MSR) 
NMF (MSRNMF), it incorporates a spatial correlation constraint and a spectral similarity constraint. A multi-
scale spatial transformation is defined that involves a modified image segmentation algorithm [8] that is used 
to segment HSI into a group of local spatial subregions (called super-pixels) with irregular shapes. The super-
pixels are used to extract information concerning spatial correlations and spectral similarity in HSIs. The HU 
problem is decomposed into two subproblems to be resolved jointly over two spatial scales: one is the original 
scale, and the other a coarse scale constructed by super-pixels. A novel regularization term is proposed to 
extract both the spatial-correlation and spectral-similarity information. 

Calculation. To begin giving the specific details of the proposed MSRNMF algorithm, we explain how to 
consider spatial priors when applying the MSR function during HU based on a linear mixing model (LMM). 
Next, a specific iterative optimization is described, and a specific implementation of the proposed method is 
presented. 

Linear mixing model. The algorithm performs HU based on LMM ignoring multiple scattering [2, 3]. 
Specifically, with L denoting the spectral dimension and N the number of pixels, the hyperspectral LMM is 
described by matrix P = [p1, p2, …, pN]R(LN) obtained from 

P = WZ + E,               (1) 

where W = [w1, w2, …, wN]R(LM) denotes the endmember matrix with M the number of endmembers,  
Z = [1, 2, …, N]R(MN) the abundance matrix, composed of N abundance vectors i = [z1i, z2i, …, zMi]T of pixel 
pi, and ER(LN) the noise matrix. The fractional abundance should meet two physical constraints: the abundance 
nonnegative constraint (ANC) zmi  0 (i = 1, …, N; m = 1, …, M) and the abundance sum-to-one constraint (ASC) 

 1 1 1, ,M
mim z i N    . 

Multi-scale spatial regularization NMF. The proposed MSRNMF unmixing scheme has two steps. First, 
using a multi-scale transformation method, the original-scale image is converted into a coarse-scale image 
composed of super-pixels by extracting spatial-correlation and spectral-similarity information between 
neighboring pixels. The spectral signatures of the super-pixels are then unmixed by solving the sparse-
unmixing problem. Next, a conjugate transform is applied to the estimated coarse-scale abundances to convert 
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the unmixed results of the coarse scale back into those of the original scale using a novel norm penalty term 
to promote spatial correlations and spectral similarities. 

Of importance is the suitable choice of the multi-scale transformation. In a physical sense, the essential 
purpose of this transformation is to segment the HSI adaptively and obtain super-pixels [9]. Specifically,  
1) pixels that are spectrally similar and spatially adjacent are grouped (not necessarily uniformly or regularly); 
2) pixels that belong to different features are separated to preserve the irregular edges and discontinuities 
among the subregions, and 3) the multi-scale transformation must be related to the spectral signatures. 

To explore spatial correlation while considering the spectral similarity among pixels, the traditional image 
segmentation algorithm was adapted for the HSI in constructing the multi-scale transformation. A modified 
simple linear iterative clustering (SLIC) algorithm [10] (not described here) was adopted to generate super-
pixels from the HSIs. The spectral reflectance of the super-pixel formed by the multi-scale transformation is 
then the average value of all pixel reflectance in the segmented area. The conjugate transform is used to attrib-
ute super-pixel values to all pixels located in the corresponding area. 

Through this multi-scale transformation, two coarse-scale variables are obtained, namely, PCR(LK) and 
ZCR(MK), 

P multi-scale transform PC, Z multi-scale transformZC,    (2) 
which are respectively the spectral and the abundance matrices of the super-pixels; here K (K<N) denotes the 
number of super-pixels. The sparsity-constraint unmixing problem of the super-pixels in the coarse scale is 
expressed as 

   
C

2
C C C C C CF0, 0

min , ; (1 / 2)f g
 

   
Z W

W Z P P WZ Z .     (3) 

Here, parameter λ controls the contribution of the sparsity function, g(ZC), which is a sigmoid measurement [11] 
implementing the abundance sparsity constraint and defined as 
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where a is a positive parameter that controls the trade-off between sparsity and uniformity. The choice a = 20 
performs well in approximating the L0 norm [11].  

The abundance matrix ẐC at the coarse scale, which is further used to normalize the unmixing problem at 
the original scale, is obtained after solving (3). Consequently, to transform the estimated coarse-scale abun-
dance matrix ẐC back to the original scale, a conjugate transformation is introduced, 

conjugate tran
DC

sformˆ ˆZ Z ,              (5) 

where ẐDR(MN) represents the approximation of the original-scale abundances, which captures the spatial 
correlations and spectral similarity between neighboring pixels and is used as a constraint on the abundance 
matrix Z. Note that this conjugate transformation is not simply an inverse operation of the multi-scale spatial 
transformation, i.e., ẐD Z. After the above conjugate transformation, a novel MSR as well as a sparsity reg-
ularization is introduced into the NMF optimization of the original-scale image, so that pixels that belong to 
the same local area should have similar abundances. The objective function of the unmixing optimization 
problem of the original-scale image is 

     
22

D DF0, 0 F
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Z W
W Z P P WZ Z Z Q Z ,     (6) 

where γ and μ denote regularization parameters, and Q = diag(q1, …, qN) denotes the weight parameter matrix. 
Its diagonal elements represent the degree to which each original pixel contributes to spatial similarity regu-
larization, which is measured using the reciprocal of the spectral-spatial distance Dj [10], considering spatial 
correlation and spectral similarity, simultaneously. Mathematically 
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          (7) 

where xj denotes the spectral reflectance of the jth pixel in the subregion,x the spectral reflectance of the 
super-pixel in the subregion, [m, n]T the coordinates of the spatial clustering center in the subregion,  
and [mi, ni]T  the coordinates of the ith pixel in the subregion. Moreover, sw is a size parameter determining 
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the size of the subregion, and ws the weighting parameter trading off the spectral similarity and spatial simi-
larity, which is set to 0.3 because in practice spectral similarity is generally more important than spatial corre-
lations. By introducing this weight parameter matrix, it is possible to avoid losing spatial details, such as target 
details and obvious boundaries. 

Optimization algorithm. Noting the requirements of the block-coordinate-descent algorithm, and for the 
objective functions (3) and (6), the optimization problem consists of three subproblems, each involving the 
iterative updating of 1) the coarse-scale abundance ZC; 2) the original-scale abundance Z; and 3) the 
endmember matrix W. To guarantee elements of W and Z are within a reasonable range during the iteration, 
the ASC must be taken into account. In the iterative process, before the abundance matrix is updated, the 
endmember matrix and the two spectral matrices are augmented [5, 11]: 

T T T

C
C

N M K

    
       

      

PP W
P P

1 1 1
  W , (8)

where 1N, 1M, and 1K are all-one vectors of size N, M, and K, respectively, and δ is a positive factor controlling 
the effect of the ASCs. In experiments, its value was set to 15. 

For each subproblem, the projection gradient descent method is used to update each unknown variable to 
impose the ANC. An economical but effective function, max(0, x), ensures a nonnegative result by setting 
negative components to zero. The update rule is then expressed as 

           C
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where μ1, μ2, and μ3 denote the small learning rates determined by the Armijo algorithm [20], and t denotes 
the tth iteration. The gradients of the corresponding variables are 

      C

2 T
C C C C C C C, ; (2 ) exp / 1 exp ( )f M a a a       Z W Z P Z Z W WZ P     ,  (12) 

T 2
D D

ˆ( , ; ) ( ) (2 ) exp( ) / (1 exp( ))f M a a a           Z W Z P W WZ P Z Z Q Z Z     ,   (13) 

  T
D , ; ( )f  W W Z P WZ P Z .        (14) 

For optimization during MSRNMF, some specific implementation issues need to be considered. One con-
cerns the initialization of matrices W and Z. VCA [12]-FCLS [13] is used for initialization. Another concerns 
the exact number of endmembers, which is assumed to be already known in our experiments. The stopping 
rule for the iteration requires the gradient error of the function (7) to be less than 0.001 of the initial value or 
the number of iterations is more than 200. 

The specific steps of the spectral unmixing method based on our MSRNMF approach are summarized as: 
Input: P = [p1, p2, …, pN]R(LN), λ, γ, μ. 
Multi-scale transform:  
1. Generate the spectral matrix PC at coarse scales using multi-scale transform. 
2. Calculate the weight of each pixel qj = 1/Dj on the basis of (7), and generate weight matrix  
Q = diag(q1, …, qN). 
Initialization:  
Initialize the endmember matrix W and abundance matrix Z and ZC.  
Iterate until convergence: 
1. Update ZC according to (9). 
2. Update Z according to (10). 
3. Update W according to (11). 
Return: W and Z. 

 

508-4 



ABSTRACTS ENGLISH-LANGUAGE ARTICLES 
 

355

Results and discussion. The unmixing performance of our MSRNMF and some state-of-the-art unmixing 
methods (VCA-FCLS, VCA-SUnSAL-TV [7], MDC-NMF [4], and L1/2-NMF [5]) were compared and evalu-
ated using two simulated datasets (all codes are implemented on MATLAB R2018b). To evaluate quantita-
tively and compare the unmixing performance, two evaluation metrics were applied, namely, spectral angular 
distance (SAD) and root-mean-square error (RMSE), to evaluate the accuracy of the endmember estimation 
and abundance inversion, respectively. Three simulated experiments using two synthetic datasets were per-
formed to assess and compare the effects of different multi-scale transform methods, the signal-to-noise ratio 
(SNR) of noise, and the endmember numbers on the performance of unmixing. 

To determine the best parameter settings for the MSRNMF algorithm, a grid search was performed on 
each dataset, and the parameter values giving the best unmixing results were selected; the values assigned 
were: λ = μ = 0.10, and γ = 0.05, and the size parameter sw of the modified SLIC algorithm was set to 5. For 
the other algorithms, the parameter values were set to those given in the corresponding references. In this 
paper, all experimental results are from the average of 30 random tests. 

Simulation experiments on synthetic data 1. Synthetic data 1 was built comprising 221 spectral channels 
and 100×100 pixel images. The endmembers were composed of nine spectra (EN1–EN9) randomly selected 
from the USGS spectral library (Fig. 1). The generation of the corresponding abundances for each endmember 
was the same as that described by Hendrix and colleagues [14]. Specifically, under nonnegative and additive 
constraints, the k-means algorithm and Gaussian filtering were used to generate the corresponding abundance 
maps. In addition, noise with different SNRs was added to the synthetic image data. 

 

Fig. 1. Endmember spectra (EN1–EN9) and corresponding abundance images for synthetic data 1. 
 

Simulation experiments with different multi-scale transformation methods. This experiment was designed 
to compare and analyze the effects of different multi-scale transformation methods on the performance of 
unmixing. Three different methods were selected to generate super-pixels and complete multi-scale transfor-
mation on synthetic data 1: the k-means method, which only considers spectral similarity; the grid method, 
which only considers spatial correlations; and the modified SLIC method, which considers both spectral sim-
ilarity and spatial correlations. This experiment used synthetic data 1 polluted with 25 and 35 dB, Gaussian 
white noise. The proposed modified SLIC method was compared with the other methods in terms of the SAD 
and RMSE average values and corresponding standard deviations (Table 1). Clearly, our MSRNMF based on 
the modified SLIC method achieved a higher performance than the MSRNMF based on the k-means and grid 
methods. Because the modified SLIC method considering the spatial correlation and spectral similarity among 
pixels is a natural and adaptive representation of the scene, better unmixing results were obtained. 

 

TABLE 1. MSRNMF Unmixing Performance Based on Different Multi-Scale Transformation Methods  
 

SNR, dB Method SAD RMSE
25 SLIC_HSI 0.0088(0.0009) 0.0685(0.0041) 

GRID 0.0118(0.0035) 0.0886(0.0088) 
KNN 0.0104(0.0010) 0.0711(0.0043) 

35 SLIC_HSI 0.0052(0.0009) 0.0301(0.0042) 
GRID 0.0099(0.0033) 0.0474(0.0113) 

 KNN 0.0075(0.0009) 0.0319(0.0049) 
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Robustness analysis of noise. The aim of this experiment was to compare and evaluate the noise robust-
ness of the algorithms in application to synthetic data 1 polluted by Gaussian noise with different SNRs ranging 
from 20 to 45 dB in 5-dB intervals. Figure 2 shows the average SAD and RMSE values and corresponding 
standard deviations of different algorithms. Generally, under the same noise and SNR conditions, our 
MSRNMF unmixing method performed better than other unmixing methods in terms of accuracy of the 
endmember estimation and abundance inversion. Moreover, as SNR decreased, the average performance of 
all algorithms for unmixing decreased. However, because of the spatial multi-scale regularization constraints 
introduced, the spatial correlations and spectral similarity of the HSIs were included in the optimization sys-
tem. The proposed method still performed well at low SNRs, thereby demonstrating a better robustness to noise. 

 
SAD    a          RMSE      b 

 
 

Fig. 2. Performance comparison of the algorithms at different SNR of Gaussian noise: a) SAD and b) RMSE. 
 

Simulation experiments on synthetic data 2. Synthetic data 2, comprising 221 spectral bands and 
100×100 pixel images, was generated using the MATLAB HSI synthesis simulation toolbox. To generate 
synthetic data 2, we randomly selected M (an odd integer from range 5–13) true endmember spectra from the 
USGS spectral library. The corresponding abundance maps were generated using the toolbox by selecting a 
spherical Gaussian field function and smoothly filtering with a nonnegative and additive constraint.  

Sensitivity analysis to the number of endmembers. With the different HSIs, the number of endmembers is 
complex and variable, and the number of different endmembers may produce some uncertain effects when 
applying the algorithm. In this experiment, synthetic data 2 was used to analyze and compare the performance 
of each unmixing algorithm when the number of endmembers was varied from 5 to 13, and the SNR of the 
Gaussian white noise was fixed at 25 dB (Fig. 3). Generally, as the number of endmembers increased, the 
complexity of unmixing increased, whereas the accuracy of unmixing decreased. Each algorithm employed 
 

SAD    a          RMSE      b 

                                                                 Numbers of endmembers

Fig. 3. Performance comparison of the algorithms with different numbers of endmembers (from 5 to 13):  
a) SAD and b) RMSE. 

SNR, dB 
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obtained better accuracy when the number of endmembers was relatively small. As the number of endmembers 
increased, the proposed method did not decrease the accuracy of the endmember estimation and abundance 
inversion, thus demonstrating its superiority. These differences were attributed to the proposed method, which 
contains more comprehensive constraint information, spatial multi-scale constraints, and abundance sparsity 
constraints. 

Conclusions. A novel blind unmixing method for hyperspectral unmixing called MSRNMF was pro-
posed. The unmixing problem was decomposed into two simples but correlated unmixing problems in the 
coarse-scale and original-scale image domains. Based on the modified simple linear iterative clustering image 
segmentation method, multi-scale spatial regularization constraint was proposed, which introduced wealth 
spatial priors and sparse priors as constraints during the unmixing procedure. During unmixing, the pixels in 
the neighborhood subspace group have a certain spatial correlation in abundance. Thus, MSRNMF captured 
the spatial correlation and spectral similarity in each pixel effectively. The results of the simulation experi-
ments using synthetic data demonstrated that this method has advantages over other methods when signal-to-
noise ratio is low and the number of endmembers large. Furthermore, a modified hyperspectral image segmen-
tation algorithm was used to segment the hyperspectral image into several irregular shape subregion groups 
effectively, thereby providing an important improvement over traditional joint spatial information unmixing 
methods. Therefore, this method indicates broad potential applications in the field of hyperspectral unmixing. 

This research was funded by the National Natural Science Foundation of China (grant No. 61575015). 
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