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Hepatitis infections represent a major health concern worldwide. Numerous computer-aided approach-
es have been devised for the early detection of hepatitis. In this study, we propose a method for the analysis 
and classification of cases of hepatitis-B virus (HBV), hepatitis-C virus (HCV), and healthy subjects using 
Raman spectroscopy and a multi-scale convolutional neural network (MSCNN). In particular, serum sam-
ples of HBV-infected patients (435 cases), HCV-infected patients (374 cases), and healthy persons (499 cas-
es) are analyzed via Raman spectroscopy. The differences between Raman peaks in the measured serum 
spectra indicate specific biomolecular differences among the three classes. The dimensionality of the spec-
tral data is reduced through principal component analysis. Subsequently, features are extracted, and then 
feature normalization is applied. Next, the extracted features are used to train different classifiers, namely 
MSCNN, a single-scale convolutional neural network, and other traditional classifiers. Among these classi-
fiers, the MSCNN model achieved the best outcomes with a precision of 98.89%, sensitivity of 97.44%, 
specificity of 94.54%, and accuracy of 94.92%. Overall, the results demonstrate that Raman spectral analy-
sis and MSCNN can be effectively utilized for rapid screening of hepatitis B and C cases. 
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Предложен метод анализа и классификации случаев вируса гепатита B (HBV) и C (HCV) 

с использованием спектроскопии комбинационного рассеяния и многомасштабной сверточной 
нейронной сети (ММСНС). Проанализированы образцы сыворотки пациентов, инфицированных HBV 
(435 случаев) и HCV (374 случая), и здоровых людей (499 случаев). Различия между пиками в измерен-
ных КР-спектрах сыворотки указывают на конкретные биомолекулярные различия между группами. 
Размерность спектральных данных уменьшена за счет анализа главных компонент, к полученным 
признакам применена нормализация. Полученные признаки использованы для обучения различных 
классификаторов, а именно ММСНС, одномасштабной сверточной нейронной сети и других тради-
ционных классификаторов. Модель ММСНС имеет лучшие результаты с четкостью 98.89%, чув-

 
** Full text is published in JAS V. 88, No. 2 (http://springer.com/journal/10812) and in electronic version of ZhPS 
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ствительностью 97.44%, специфичностью 94.54% и точностью 94.92%. Показано, что спектраль-
ный анализ комбинационного рассеяния и ММСНС могут быть эффективно использованы для 
быстрого скрининга гепатитов B и C. 

Ключевые слова: многомасштабная сверточная нейронная сеть, гепатит В, гепатит С, спек-
троскопия комбинационного рассеяния. 

 
Introduction. Hepatitis is the second most common disease worldwide with half of the cases in develo-

ping countries. The mortality rate of hepatitis is quite high, which can be primarily reduced through early di-
agnosis and treatment [1]. Most of the hepatitis infections are due to either hepatitis-B virus (HBV) or hepa-
titis-C virus (HCV) [2]. According to the World Health Organization (WHO), there are 350 and 170 million 
cases of HBV and HCV chronic infection globally, respectively. Further, the annual number of deaths 
caused by HBV and HCV are nearly 10,000 and 600,000 [3], respectively. Moreover, people with hepatitis 
are at a high risk of developing liver cancer [1]. While both types of hepatitis are infectious liver diseases, 
they can be differentiated based on the key aspects. Firstly, HBV is a DNA-type virus, while HCV is a RNA-
type virus [4]. Second, HCV is highly susceptible to mutations. This complicates the treatment and vaccine 
development for HCV [4].  

Raman spectroscopy is a modern scattering-based spectroscopic technique for material composition 
analysis [5]. This technique is frequently used for non-invasive, real-time diagnosis of cancer and various 
other infections [6]. For example, Raman spectroscopy has been successfully used in the early diagnosis of 
dengue fever [7], nasopharyngeal carcinoma [8], esophageal cancer [9], and rectal cancer [10]. In fact, the 
applicability of Raman spectroscopy in medical diagnosis is based on the disease-specific variations in spec-
tral variables including the locations of the characteristic peaks, intensity of the scattered radiation, and spec-
tral linewidth. The abscissa of the Raman spectrum is the Raman shift, which represents the spectral differ-
ence between the incident and scattered light rays. The ordinate of this spectrum is the photon count, which 
represents the intensity of the scattered light [11].  

Over the recent years, deep learning has emerged as one of the key high-performance computer meth-
odologies for extracting information from raw data. Numerous deep learning techniques have been proposed 
to extract data-driven features and implement classification and prediction tasks in large-scale and big-data 
problems [12]. Deep learning has especially been applied for solving complex chemical and biological prob-
lems in the fields of spectroscopy [13–17], proteomics [18–20], metabolomics [21, 22], and genomics 
[23, 24]. In particular, convolutional neural networks (CNNs) represent one of the most prominent deep 
learning architectures. However, conventional single-scale convolution kernels in CNNs miss key details 
during the information encoding process. Inspired by the InceptionNet [25] architecture, multi-scale convo-
lution kernels are used in this study to extract rich, inconspicuous features from the input Raman spectra. 
This multi-scale scheme promotes the encoding of more useful Raman spectral features. 

We proposed to use Raman spectroscopy in combination with a multi-scale convolutional neural net-
work (MSCNN) to differentiate between HBV, HCV, and healthy samples. Firstly, Raman spectral features 
are obtained for each sample. Then, principal component analysis (PCA) is applied to reduce the dimension-
ality of spectral features. Subsequently, mean normalization is performed on the spectral features. Finally, 
the spectral features are used to train and test a MSCNN architecture. An experiment is designed to compare 
the performance of deep learning and conventional classifiers. The deep learning classifiers include a single-
scale CNN, MSCNN, and MSCNN with a long short-term memory (LSTM). The conventional classifiers in-
clude the naive Bayes classifier, k-nearest neighbor (KNN) classifier, logistic regression, random forests, de-
cision trees, support vector machines (SVMs), and gradient boosting decision trees (GBDTs).  

Materials and methods. Serum sample collection. For the experimental evaluation of the proposed 
method, we collected 435, 374, and 499 serum samples of hepatitis-B patients, hepatitis-C patients, and 
healthy subjects, respectively. The diagnosis and sample collection were done at the First Affiliated Hospital 
of Xinjiang Medical University. The serum samples of the HCV-infected patients passed the reverse tran-
scriptase polymerase chain reaction (RT-PCR) test. The RT-PCR method was used to quantitatively detect 
the HCV RNA. For each HBV- and HCV-infected patient, we collected 5 mL of fresh blood after 8 h of fast-
ing. After full coagulation of the blood sample, components such as fibrinogen and blood cells were re-
moved by a high-speed centrifuge at a speed of 3000 rpm. Then, a serum volume of 500 μL was collected in 
an Eppendorf tube and stored at –80°C. Before the examination, the specimen under test was placed in an 
environment of 22°C for 30 min. After sufficient dissolution, 30 μL of the serum sample was captured in a 
capillary glass tube for spectral analysis. The age and gender information of the study sample is shown 
in Table 1. 
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TABLE 1. Demographic Data of the Study Population 
 

Group Control (n = 499) HBV (n = 435) HCV (n = 374) 
Age (years, s.d) 19–86 20–79 22–89 

Gender (%F) 44.9 47.4 50.0 
 

Raman spectroscopy. The source laser beam was focused on the surface of a droplet by a 50 micro-
scope objective (numerical aperture = 0.5) with a spectral resolution of 5 cm–1 and a recording time of 1.0 s 
(LabRAM HR Evolution Raman Spectrometer, HORIBA Scientific Ltd.). The spectral data resolution and 
Raman shift were measured three times and averaged, and the corresponding average values were 5 and 
300–3000 cm–1., respectively.  

Preprocessing and analysis of spectral data. Since the raw Raman spectra obtained from the serum sam-
ples contained significant fluorescence background and noise, spectral preprocessing was necessary [26–28]. 
The preprocessing steps were as follows: the fluorescent background was removed; spectral smoothing was 
applied; PCA was used to reduce the feature dimensionality. For background subtraction, the Vancouver 
Raman algorithm based on a fifth-order polynomial was used to fit all the autofluorescence backgrounds of 
serum. The Savitzky–Golay filter was used to smooth the spectra of all the samples, and the fifth-order poly-
nomial was subtracted to correct the baseline [29]. Finally, comparative experiments were conducted to se-
lect the appropriate samples. 

Evaluation criteria. For the experiments, we divided the collected data into training and test sets with 
sizes in the ratio of 4:1. For performance evaluation, a confusion matrix was used to numerically quantify 
the misclassification among the pairs of classes [30]. Specifically, this matrix described the confusion be-
tween the real and output classes, where the non-diagonal element in the i-th row and j-th column indicated 
the number of samples in the i-th class that were wrongly recognized by the classifier as samples of the j-th 
class. The number of the correctly classified samples of the i-th class was stored as the i-th diagonal element 
in the confusion matrix [31]. The following performance measures can be derived from the confusion ma-
trix. 
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Accuracy: Ratio of the overall number of the correctly classified samples to the total number of samples. 
Precision: Number of relevant positive samples among the samples predicted to be positive.  
Sensitivity: Ratio of the truly positive samples that have been correctly classified.  
Specificity: Ratio of the truly negative samples that have been correctly classified.  
F1-Score: This a measure of the classification accuracy based on a combination of the precision and re-

call. The value of this measure ranges from 0 (worst performance) to 1 (best performance). 
Advanced spectral data processing. PCA-based dimensionality reduction. PCA is a dimensionality 

reduction method based on linear transformations. Essentially, the input features are projected to several co-
ordinates for maximizing the feature variance by coordinate rotation and obtaining a new data representation 
that is more aligned with principal variations. Dimensionality reduction is achieved by exploiting multi-
collinearity [32]. The PCA-based dimensionality reduction algorithm can be outlined as follows: 

Input: A Raman spectral sample set  1 2 ,  ,  , , d
m mX x x x x R   . 

Steps: 1) Subtract the data mean: For the Raman intensity corresponding to each Raman shift, subtract 
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the mean of the j-th feature from each i-th sample, xi
(j) = xi

(j) – j where ( )

1

1 m
j

j k
k

x
m 

   . The mean values of 

the features can be combined into a mean vector  1, 2,  
, , d

d R        . 

2) Calculate the covariance matrix of the Raman spectral data  X TX  . 

3) Perform an eigenvalue decomposition of the covariance matrix X TX  . Use the eigenvectors u1, 
u2... corresponding to eigenvalues λ1 > λ2 >... to form the transformation matrix U. 

4) Generate features of reduced dimensionality,  1 2Z ,  ,  ,  ,     ,   T
m i iZ Z Z Z U x i    = 1, 2, …, m. 

These features represent an approximation of the original features,   ,  
iZD U i   = 1, 2, …, m. 

Output: ;l m d mZ R D R   . 
Mean normalization. Normalization or scaling of features [33] ensures the same range of values for 

each feature. Normalization can be formulated as follows: 
value

max

u
x


 . This operation leads to numerical 

stability and helps in reaching the optimal solution. Indeed, normalization causes the gradient to always 
move in the direction of the minimum objective value. This leads to the acceleration of convergence and 
faster attainment of the global minimum [34]. 

Model construction. Multi-scale convolution neural network. MSCNNs were used as the learning 
framework in this work. An MSCNN consists of three parts: multi-scale feature extraction layers, multi-scale 
feature fusion layers, and the dimensionality reduction layers. The architecture of MSCNN is shown in Fig. 1. 

 

 

Fig. 1. Architectural model of MSCNN. 
 

Multi-scale feature extraction layers. Multi-scale feature extraction layers extract data characteristics 
from multiple scales. This layer is mainly composed of parallel convolution kernels of multiple scales. The 
characteristics of the convolution kernels at different scales are different. In this paper, we apply this feature 
extraction scheme with five scales or sizes of convolution kernels. The first multi-scale feature extraction 
layer has five kernel scales of 2*1, 3*1, 4*1, 5*1, and 10*1. The second multi-scale feature extraction layer 
also has five kernel scales of 1*1, 3*1, 5*1, 7*1, and 9*1. There are various methods for extracting feature 
scales. Too few feature scales can lead to underfitting, while too many feature scales can cause overfitting. 
Dropout and batch normalization modules are added after each convolutional layer. The dropout module can 
prevent overfitting. Batch normalization significantly speeds up the training of the deep learning model 

 1    1 1 1 1    δ1 * *δ1 δ1 m( ) (0,ax )
i i i ii i ixf x W x B W B x x x  （ ）  [35].  1

1      1   1    1 1( ) ( δ1) *
i i

m m
ii if f W xx Bx      . 

Let the input of each multi-scale feature extraction layer be x, where the model contains m convolution-
al layers, and the sizes of convolution kernels between the layers are different. Then, the i-th convolutional 
layer of the first multi-scale feature extraction module can be modeled as 

 1    1 1δ1 *
i iif x W x B （ ） , 

where 1i
W  and 1i

B  represent the weight and offset of the convolution kernel in the i-th convolutional layer 
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in the first multi-scale fusion module, respectively; * indicates the convolution operation; δ indicates the i-th 
convolution after the implementation of rectified linear units (ReLU) δ1i , which are employed in this meth-

od and defined as 

    )δ m(1 ax 0,i xx  , 

where x is the ReLU input. 
Multi-scale feature fusion layers. A multi-scale feature fusion layer fuses multiple features after multi-

scale feature extraction [35]. The mathematical expression for the output of such layer is 

 1
1      1    1  1 1δ1 *( ) ( )

i i

m m
ii if Wxf x Bx      , 

where x represents the input of the multi-scale feature extraction layer, f 1(x) represents the output of the first 
multi-scale feature fusion layer, and the parameters 1i

W  and 1i
B  represent the weight and offset in the di-

mensionality reduction layer, respectively. The operator    δ1i  represents the operation of the ReLU nonlinear 

activation unit. 
Dimensionality reduction layer. The dimensionality reduction layer is composed of a convolution layer 

with a kernel size of 1*1. The number of convolution kernels in the convolutional layer is less than that of 
the channels in the multi-feature fusion layer. The 1*1 kernel size can maintain all the feature information of 
the multi-feature fusion layer. Due to the single-channel, the multi-scale feature map obtained by the final 
convolution is also reduced. This leads to a reduced dimensionality. The output of the dimensionality reduc-
tion layer of the first multi-scale feature fusion module is expressed as follows: 

 1 1

1 1
   1 1δ * ( )

m m
F W f x B

 
  , 

where x represents the input of the multi-scale feature extraction layer, and f 1(x) represents the output of the 
first multi-scale feature fusion layer. The parameters 

11m
W


 and 

11m
B


 represent the weight and offset in the 

dimensionality reduction layer, respectively, and δ represents the ReLU nonlinear activation unit of the di-
mensionality reduction layer. 

The outputs of the multi-scale feature fusion modules of layers other than the first layer (l > 2) are ex-
pressed as follows: 

  1 1

1
      11δ * δ *

m i i m

ml l
l i l liF W l W F B B

 


   , 

where 1lF   represents the output of the previous multi-scale feature fusion module, and the parameters 

1
 

ml
W


 and 

11m
B


 represent the weight and offset of the convolution kernels in the dimensionality reduction 

layer, respectively. The parameters 
il

W  and 
il

B  represent the weight and offset of the convolution kernels in 

the i-th convolutional layer of the first multi-scale feature fusion module, respectively. 
LSTM architecture is often used in natural language processing, especially in sentiment analysis. Fur-

ther, it has been used in classification models that fuse multiple features [36] as well as in analog classifica-
tion problems. However, the results show that the accuracy of LSTM is 4.05% less than that of MSCNN. 
LSTM increases the training time, and the relative advantages of MSCNN are obvious. 

Results and discussion. Raman spectral analysis. As a type of fingerprint, the Raman spectra of serum 
can be used to detect changes in biological molecules, such as proteins, nucleic acids, and lipids, of different 
organisms and interpret the physiological fluctuations of the body to diagnose diseases.  

As shown in Fig. 2, after the baseline correction, the values of Raman spectral intensity for  
HBV-infected patients are generally higher than those for healthy subjects, while the values for HCV-
infected patients are essentially lower than those for healthy subjects. The Raman shift is 1154.58 cm–1. Fur-
ther, the peak intensities of the three spectra are 2910, 2731, and 2213 a.u. for the HBV, healthy, and HCV 
subjects, respectively. Through baseline correction, the differences between the principal components (PCs) 
of the three spectral classes can be better explained. The three Raman spectra are quite similar in shape. 
However, there are intensity differences at Raman shifts of 509, 875, 1018, 1154, 1155, 1444, 1595, 2660, 
and 2850 cm–1.  
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TABLE 2. Sample Raman Shifts and their Assignments 
 

Raman shift, cm–1 Assignment 
509 S-S disulfide stretching band of collagen v (S-S) 

gauche-gauche-gauche (amino acid cysteine) [37]  
875 
 
1018 

Antisymmetric stretching vibration of the choline group  
 3 3

N CH , characteristic for phospholipids [37]  

Stretching C-O ribose [38] 

1154 Deformational mode of carbohydrates [39]  
1155 Spectral signature for the CO group of ribose [40, 41]  
1595 
2850 
860–870 
 
960–980 
1000–1030 cm–1 
 
1400–1460 
 
1400–1600 
1500–1600 

Benzoquinone [42]  
Lipids, fatty acids [42]  
Possible changes in polysaccharide structure are observed in 
this region [43] 

N(C–C) stretching (probably in amino acids) [43] 
This region allowed for a complete separation between HBV- 
and HCV-infected and normal blood serum spectra [43] 
This region allowed for a complete separation between HBV- 
and HCV-infected and normal blood serum spectra [43] 
C-120 protein in human blood serum [43] 
Amide-I bond [43] 

 
Table 2 lists the Raman shifts and the associated causes for the samples. The Raman peaks at 509 and 

2660 cm–1 correspond to cysteine and methionine, respectively [44, 45]. Since the liver is crucial for amino 
acid metabolism, HBV causing liver damage also leads to disorders in the amino acid metabolism, thereby 
affecting the amino acid profile of serum [46]. The Raman peak at 875 cm–1 corresponds to the antisymmet-
ric stretching vibration of the choline group N+ (CH3)3, which has the characteristics of phospholipids, 
phosphatidylcholine, and sphingomyelin [47]. The peak at 1444 cm–1 in the serum spectrum is assigned to 
CH2 wagging of cholesterol and lipids, which exhibits a higher intensity in the HBV infection group. Bremer 
et al. found that the HBV infection depends on the presence of cholesterol in the viral envelope and is essen-
tial for the entry process of the HBV [48]. Li et al. demonstrated that the HBV aggravates the accumulation 
of hepatic cholesterol, which affects the content of serum cholesterol [49]. The main characteristic peaks in 
the Raman spectrum that correspond to HBV are located at 1018, 1154, 1595, and 2850 cm–1. Among them, 
the peak at 1018 cm–1 is related to a ribose (DNA), while the one at 1154 cm–1 corresponds to the defor-
mation of carbohydrates. The peak at 1595 cm–1 is relatively strong, which may be attributed to an early liver 
injury that occurred due to a viral infection, for which benzoquinone is an important biomarker. On the other 
hand, the Raman peak at 2850 cm–1 corresponds to lipids and fatty acids. The differences in the strength of 
these peaks may be due to the imbalance of liver metabolism; thus, they can be used as a characteristic peak 
in the diagnosis of HBV [50]. 

The Raman peak at 1155 cm–1 is a spectral signature for the CO group of ribose, which is already re-
ported as the most reliable marker for the HCV detection in serum [51]. Therefore, our results validate the 
previous reports on this Raman band for detecting HCV infection. The presence of the positive difference 
bands in the range of 1200–1400 cm–1 indicates that the base stacking of A-RNA sequences is significantly 
perturbed under interaction with HCVc-120 protein [52]. 

Furthermore, the 1400–1600 cm–1 region in the Raman spectrum of HBV and HCV is due to the pres-
ence of C-120 protein in human blood serum, which exhibits a strong broad amide-I bond centered near 
1500–1600 cm–1. Compared to the normal samples, the protein and lipid structures of HBV and HCV speci-
mens are different. Spectral changes are observed in the protein bands, amide I (1560–1590 cm–1), amide 3, 
and N(C–C) stretching (possibly in amino acids, 960–980 cm–1) [40, 53]. In addition, potential variations in 
the polysaccharide structure are noticed in the range of 860–870 cm–1. The analysis of band intensity in the 
ranges of 1560–1570, 1400–1460, and 1000–1030 cm–1 allows for the complete separation of HBV- and 
HCV-infected serums from normal serums. For HCV cases, the viral structure and non-structural proteins 
are created by the cleavage of the polyprotein precursors of the host cell signal peptidase and the viral prote-
ases [54]. The structural core protein is derived from the amino terminus of the polyprotein and may form vi-
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rion nucleocapsid because they are highly basic and similar in many biological properties. The nucleotide 
and predicted amino acid sequences of the core protein gene are highly conserved in different HCV isolates. 
Earlier investigations have shown that truncated proteins covering the core protein (HCVc-120) are assem-
bled into nucleocapsid-like particles without the presence of nucleic acids with similar morphological and 
size distributions in the serum of hepatocytes from HCV-infected patients. This explains the abnormal levels 
of liver enzymes, such as alanine aminotransferase (ALT), and the active division of viruses (HBeAg-
positive or high-level HBV DNA) in the human blood and liver biopsies, which show moderate disease ac-
tivities in hepatitis-B cases. The C virus confirms the presence of positive HCV RNA.  

 

 
Fig. 2. Raman intensity vs. frequency shift for HBV patients, HCV patients, and healthy subjects. 

 
Table 3 shows the performance of this algorithm for different numbers of PCs. It is evident that the 

specificity reaches 99.98% when the PC count is 200, and the highest precision of 99.89% is achieved when 
the PC count is 400. Further, the highest sensitivity and accuracy of 94.54 and 94.92%, respectively, are at-
tained when the PC count is 512, i.e., the best performance is achieved at this PC count. Hence, we set the 
number of PCs as 512 in subsequent experiments (Table 4). 

 
TABLE 3. Classification Performance Metrics for Different Numbers of PCs 

 
PC, count Specificity, % Precision, % Sensitivity, % Accuracy, % 

60 85.56 71.74 89.19 89.57 
100 98.30 95.39 83.78 93.61 
200 99.98 98.55 90.54 94.38 
300 98.92 97.06 89.19 93.23 
400 98.23 99.89 90.54 94.00 
500 99.41 99.25 91.89 94.13 
512 97.44 98.89 94.54 94.92 
525 98.65 99.42 93.66 94.23 
550 98.42 99.02 92.34 93.58 
600 99.41 98.53 90.54 93.36 

 
TABLE 4. Comparison between the Performance Metrics before and after the Normalization 

 
Normalization Period Specificity, % Precision, % Sensitivity, % Accuracy, % 

Before normalization 96.97 93.06 90.54 90.55 
After normalization 97.44 98.89 94.54 94.92 
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Mean normalization. To prove the effectiveness of mean normalization, we performed two sets of ex-
periments. As shown in Table 3, the utilization of mean normalization increases the specificity by 0.47%, 
precision by 5.83%, sensitivity by 4.00%, and accuracy by 4.37%. 

Comparative experiments. To verify the efficacy of the proposed network, we conducted three com-
parative experiments using: different layers in our network; commonly used algorithms in deep learning; 
commonly used algorithms in machine learning. 

Feature scales can be extracted through various methods. Too few or too many feature scales can easily 
lead to underfitting or overfitting, respectively. To compare the stability and goodness of fit for different 
classifiers, we performed comparative experiments on multi-scale fusion of different layers. Here, all the 
compared algorithms were implemented in the PyCharm environment. 

The experimental results in Table 5 show that with two extraction and fusion layers, the specificity, 
precision, sensitivity, and accuracy are 97.44, 98.89, 94.54, and 94.92%, respectively. With one extraction 
and fusion layer, the experimental results show underfitting, and the accuracy is reduced by 2.43% compared 
to the two-layer scheme. With three extraction and fusion layers, the experimental results show overfitting, 
and the accuracy is reduced by 3.22% compared to the two-layer scheme. Compared to the one-layer and 
three-layer schemes, the extraction and fusion layers provide better performance in a two-layer scheme. 
Overall, these results indicate that the two-layer multi-scale fusion scheme exhibits better stability than the 
one-layer multi-scale fusion scheme and has better fit than the three-layer multi-scale fusion scheme. 

 
TABLE 5. Experimental Results for Multi-Scale Three-Class Hepatitis Classification Problem  

with Different Layer Numbers 
 

Number of layers (feature ex-
traction and fusion layers) 

Specificity, % Precision, % Sensitivity, % Accuracy, % 

One layer 80.23 63.44 79.73 92.55 
Two layers 97.44 98.89 94.54 94.92 

Three layers 99.39 98.53 90.54 91.70 
 

For comparison of deep learning architectures, we conducted three sets of experiments. As shown in 
Table 6, we also tried CNNs, whose fitness is inferior to that of MSCNN. In this experiment, although the 
specificity of CNN reaches 99.18%, its accuracy is only 68.56%. Indeed, single-convolution kernels tend to 
remove more spectral information, while multi-scale deep schemes improve the accuracy of spectral classifi-
cation. Features of the input spectral intensity are extracted using convolution kernels of different scales to 
enhance the robustness of algorithm to interfering factors. 

 
TABLE 6. Performance Comparison among the Three Deep Learning Architectures 

 
Network structure Specificity, % Precision, % Sensitivity, % Accuracy, % 

CNN 99.18 89.47 67.56 68.56 
MSCNN 97.44 98.89 94.54 94.92 
LSTM 92.03 83.33 87.84 88.89 

 
To compare MSCNN with different machine learning methods, we conducted eight sets of experiments. 

Here, we also used conventional classifiers including those of naive Bayes, KNN, logistic regression, ran-
dom forests, decision trees, SVMs, GBDT along with MSCNN for the three-class hepatitis classification 
problem. The experimental results indicate that conventional classifiers are not adequate for this classifica-
tion problem, but few of these classifiers still have some advantages. The experimental results are shown in 
Table 7. Here, for the naive Bayes classifier, it is assumed that the input features are independent of each 
other. However, this assumption is not practically true because the number of spectral features is relatively 
large and therefore the correlation between these features is large. Consequently, for the naive Bayes classi-
fier, the accuracy is quite low, and the specificity is 7.97% lower than that of MSCNN. 

Generally, the KNN classifier does not perform well for multi-dimensional data including Raman spec-
tral data. High dimensionality of data leads to the ‘curse of dimensionality,’ and it increases the distance be-
tween two apparently similar spectral features. Consequently, the sensitivity of KNN is much higher than 
that of the naïve Bayes classifier, but it is still far lower than that of MSCNN. 
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TABLE 7. Performance Comparison between MSCNN and other Traditional Classifiers 
 

Algorithm Recall, % F1-score, 
% 

Support Specificity, 
%

Precision, % Sensitivity, 
% 

Accuracy, 
% 

Naive Bayes 44.12 37.43 131 89.47 50.00 16.22 43.51
KNN 60.53 60.53 131 80.82 57.58 51.35 59.54 
LR 71.87 68.56 131 69.51 56.24 86.49 69.94
RF 65.38 64.94 131 100 100 24.32 64.89
DT 69.55 69.55 131 82.28 57.58 51.14 64.12

SVM 38.73 21.29 131 74.44 58.18 86.47 75.57 
GBDT 82.05 82.05 131 91.86 80.00 75.68 82.45

MSCNN 93.00 93.00 131 97.44 98.89 94.54 94.92
 

Logistic regression cannot handle a large number of multi-class spectral features efficiently. While the 
sensitivity for this classifier is relatively high, it is still lower than that of MSCNN by 8.05%. 

The decision tree classifier ignores the correlation between the Raman spectral features, which leads to 
low performance metrics and high overfitting. 

Overfitting problems can be reduced using random forests, which are equivalent to multiple decision 
trees whose predictions are pooled to obtain an ensemble prediction. For the random forest classifier, the 
specificity and precision are perfectly 100%, but the sensitivity is extremely low. 

While random forests suffer from a low sensitivity, the GBDT classifier has a relatively high sensitivity, 
and its accuracy (82.45%) comes second after MSCNN. However, due to the dependence between the weak 
classifiers of GBDT, it is difficult to train these classifiers in parallel. 

SVM algorithm was originally designed for binary classification problems. For multiple classes, it is 
necessary to construct a suitable multi-class classifier. We classify the hepatitis-B and non-hepatitis-B sam-
ples, and then classify the non- hepatitis-C and hepatitis-C samples into two categories. This disturbs the 
sample balance, and the results are generally inferior for the rare category, namely the hepatitis category. In 
general, traditional machine learning algorithms are not very effective for the three-category classification 
problem. 

Model evaluation. The classification results of MSCNN are specificity 0.974±0.011, precision 
0.989±0.015, sensitivity 0.945±0.008, accuracy 0.949±0.010. It is clear that the MSCNN model outperforms 
the other models in terms of accuracy and sensitivity. Although the specificity of CNN reaches 99.18%, a 
CNN with a single convolution kernel misses more details during information encoding. While random for-
ests show 100% specificity and precision, their accuracy and sensitivity are quite inferior to those of 
MSCNN. 

For a better experimental evaluation, GPU acceleration was used with an NVIDIA 1060 graphics card. 
In this experiment, we chose a setup where dimensionality reduction was firstly applied with 512 PCs. Then, 
the features were normalized by the mean value, and finally the MSCNN architecture was used for classifi-
cation. Averaging the performance over ten runs results in an accuracy of 98.89%, sensitivity of 97.44%, 
specificity of 94.54%, and accuracy of 94.92%. The confusion matrix  

 

Confusion Matrix 
Predicted Class

0 1 2
True Class 0 70 1 3

1 1 95 4
2 1 4 82 

 

shows the classification outputs for one run. 
Conclusions. We demonstrated the effectiveness of using deep learning MSCNN model and serum 

Raman spectroscopy to screen the HBV-infected and HCV-infected patients and differentiate them from 
healthy subjects. The baseline correction of spectral data revealed interesting differences between the three 
classes in terms of biomolecular structure and the relative contents of lipids, cholesterol, proteins, cysteine, 
etc. The classification performance analysis of MSCNN revealed that the pull Mann's spectrum of serum can 
be efficiently used to diagnose potential HBV-infected and HCV-infected cases. Owing to the rapid ad-
vancement and utilization of Raman spectroscopy, our work is expected to provide accurate and rapid guid-

338-9 



ABSTRACTS ENGLISH-LANGUAGE ARTICLES 
 

347

ance for the treatment of HBV-infected and HCV-infected patients in the near future.  
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