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Two chemometric models drawing on diffuse reflectance near infrared spectroscopy and Raman scat-
tering are proposed to predict caffeine content in tablets based on acetylsalicylic acid, dipyrone, and para-
cetamol contents. However, data mining from these analyses to create models generally requires a prior
comparison between spectral data and the results from reference values obtained by analytical methodology.
Therefore, the construction of a robust calibration model entails that both analytical methods are simultane-
ously employed on several samples, which represents a limiting factor for the widespread use of spectrosco-
py. In this case, grounded tablets of different brands, containing only the active principles acetylsalicylic ac-
id, dipyrone, or paracetamol and their excipients, were doped with controlled amounts of pure caffeine
ranging from 0 to 10%(w/w) and used as calibration samples. Thus, caffeine quantification with a reference
method was not necessary. The prediction samples had at least one of the aforementioned active ingredients
and caffeine in its original formulation. Hence, the %(w/w) values of caffeine used as reference for the pre-
diction steps were calculated from the values described on the drug description leaflet and the tablet final
mass. Partial least squares regression was used as a multivariate method to construct the models. The near
infrared and Raman prediction models for caffeine, using four latent variables, presented the respective val-
ues of 0.79 and 0.78 of root mean square errors of cross validation, 0.74 and 1.00 of root mean square er-
rors of prediction, and 0.97 and 0.97 of correlation coefficients.

Keywords: caffeine, acetylsalicylic acid, dipyrone, paracetamol, partial least squares regression, near
infrared spectroscopy, Raman scattering.
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Hanuyus Kogeuna 6 mabiemrax, coOeplHcauux ayemuiCaiuyiiosyto KUCIomy, OURUPOH U NaApayemamol.
Jna coz0anus mooeneii 00bIYHO mpebyemcs nped8apumenbHoe CPAGHEHUE CNeKMPALbHbIX OAHHBIX U IMa-
JIOHHbIX 3HAYEHUU, NOJNYYEHHbIX C NOMOWbIO AHAIUMUYECKOU Memoodonocuu. /s nocmpoenusi HadeiCHou
Kanubpo8oUHOU MOOenu HeoOX00UMO 00OHOBPEMEHHOE NPUMEHEHUe 000UX AHATUMUYECKUX Memo008 HA He-
CKONILKUX 00pa3zyax, ymo s81emcs 02panuiugaromyum Gaxkmopom 07 WUpoKo2o UCHOIb3068AHUSL CHeKMpO-
ckonuu. HMzmenvuenuvie mabiemku paziuyHbiX MAapox, cooepicauue Mmoabko Oelicmeylouue euecmea —
ayemuICATuYUIO8yI0 KUCIOMY, OUNUPOH ULU NAPAYEMAMOTL — U BCHOMO2AMENbHbIE 8eleCmad, 0ONUPOsal
KOHMPOAUPYEMbIM KOAULECMBOM YUCT020 Kopeuna ¢ ouanazone 0—10 mac.% u ucnorvzosanu 8 kauecmaee
Kanubpogounvlx 06pasyos. Taxum oOpazom, KOIUUECMEEHHO20 ONpedeneHus: KOpeuna 3maioHHbiM Memo-
0om He nompebosanocs. Obpazyvl 0151 NPOSHO308 COOEPHCANU NO KPAUHEU Mepe 0OUH U3 GbLULEYNOMSIHYbIX
AKMUBHLIX UHepeduenmos u kogeun. Konyenmpayuu xopeuna (mac.%,), ucnonv3yemvie 8 Kaiecmee ImMaio-
HO8 011 9Manoe NPOSHO3UPOBAHUS, PACCUUMANbL HA OCHOBE 3HAYEHUL, NPEOCMABIECHHBIX 8 ONUCAHUU JeKaAD-
CMBEHHO020 CPeOCmaa, U KOHeYHOU Mmaccel mabnemku. Peepeccus vacmuynblx HQUMeHbUWUX K8AOPAMOG UC-
RONb308ANACH KAK MHO2OMEPHbLL MemoO 0/ ROCmpoeHusi moodenel. Moodeau npoeHo3uposanus, 0CHOBaAHHbIE
Ha onudicheli UK-cnekmpockonuu u KOMOUHAYUOHHOM PACCeSHUU C8emd, C UCNOb308AHUEM Yemblpex Ja-
MEHMHBIX NePeMEenHbIX 01 KOQeuHa NnoKazau ciedyiowue pesyibmamsl. CPeOHekeaopamuytble OuuoKu
nepexpecmuotl npogepku 0.79 u 0.78, cpeonexsadpamuunvie owudbxku npoeroza 0.74 u 1.00, xosgppuyuen-
mut koppensiyuu 0.97 u 0.97.

Knrouegvle cnosa: xogeun, ayemuicarnuyuniosas KUcioma, OURUPOH, NAPAYEemamo, YaCmuyHas pe-
2peccusl HaUMEHbUWIUX K8AOPamos, OIUMNCHSISL UHPPAKPACHASL CHEKMPOCKONUSL, KOMOUHAYUOHHOE PACCESTHUE.

Introduction. The worldwide consumption of caffeine (1,3,7-trimethylxanthine), a legal psychostimu-
lant molecule, is considered extremely elevated nowadays, since this molecule can be found in several wide-
ly consumed beverages, such as coffee and teas, as well as in a diverse variety of foods, capsules, pills, solu-
tions, meal supplements, and medicines [1, 2]. This substance can be considered one of the most controver-
sial molecules found in nature. Depending on its dosage and due to its varied pharmacological action, caf-
feine can cause both beneficial (relief of postoperative pain and headache, appetite suppression, and en-
hancement of cognitive performance) [3] and adverse effects (e.g., nervousness, dizziness, withdrawal syn-
drome, and tachycardia) [4]. This molecule also acts as a stimulant of both central nervous system [5] and
cardiovascular system, also triggering calcium homeostasis [6, 7]. The most frequent appearance of caffeine
in medications occurs in painkillers, for the treatment of tension headaches, post-surgical pain, migraines,
fibromyalgia [8—11]. The following painkillers can be highlighted: acetylsalicylic acid [12, 13], dipy-
rone [14—16], paracetamol [17], diclofenac [18], and ibuprofen [19, 20].

In Brazil, the number of people who self-medicate with these painkillers has increased considerably
through time due to the ease in acquiring these medicines, which can be sold without a prescription. There-
fore, the National Health Surveillance Agency (In Portuguese — Agéncia Nacional de Vigilancia Sanitaria—
ANVISA) limits the maximum amount of caffeine that could be added into these medicines and dietary sup-
plements [21]. The chief methods described in the scientific literature for the quantification of caffeine in
different matrices are high-performance liquid chromatography (HPLC) and its variations [22-25]. Although
these chromatographic methods are suitable for the determination of this molecule, these techniques have
several negative factors, such as high cost, long analysis time, use of ultrapure solvents, and sample prepara-
tion, when compared to certain spectroscopic methods combined with chemometrics [26-29]. The spectro-
scopic techniques based on near infrared (NIR) and Raman scattering, associated with chemometric tools
have appeared to be excellent alternative techniques to quantify compounds, since almost no sample opening
and reduced analysis time enhance their efficiency [30-35].

Therefore, this work aims to use near infrared and Raman scattering data with partial least squares re-
gression (PLSR) to predict caffeine content in several commercial ground tablets based mainly on acetylsali-
cylic acid, dipyrone, and paracetamol. To do this, several other drug samples containing these three active
ingredients (acetylsalicylic acid, dipyrone, and paracetamol) and their excipients were doped with pure caf-
feine (in different percentages) and used to create the two multivariate models. Furthermore, this work also
presents an interesting discussion on the selected spectral regions from both spectroscopic techniques to pre-
dict caffeine content in complex matrices.

Experimental. Caffeine anhydrous (minimum 99 % purity) was obtained from Sigma—Aldrich (Munich).
For the construction of the two calibration sets, tablets containing only acetylsalicylic acid (ASA), dipyrone
(DIP), or paracetamol (PARA) with their different excipients were acquired in pharmacies from Vila Velha
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City (ES, BR) (2018/2019-2019/2020 batches). For the Raman analyses (2018/2019 batch), four different
brands of manufactured tablets (2 for ASA, 1 for DIP and PARA) were acquired (EMS, Neoquimica, Med-
ley and Prati). For the NIR analyses (2019/2020 batch), six different brands of manufactured tablets (two for
each active principle) were obtained (Neoquimica, Prati, EMS, Sanofi, Anador and Medley). In both cases,
the excipient used in each manufactured tablet could be different (this is important to predict the power of
the two multivariate models). It is noteworthy that the Raman data analyses were performed between 2018
and 2019, while the NIR data was acquired between 2019 and 2020. Therefore, the two calibration sets were
measured with completely different batches of tablets. For the two prediction sets (NIR and Raman), other
manufactured tablets were acquired from novel brands containing a mixture of caffeine and at least one of
the active principles (ASA, DIP, and PARA) in their manufactory formulation (nine commercial samples for
Raman analyzes 2018-2019 batch, and eight for NIR 2019-2020 batch).

The caffeine concentrations %(w/w) used for the prediction sets were calculated using the mass de-
scribed on the drug description leaflet and the tablet mass. Hence, it was a nominal value, which was not
measured by reference methods, such as HPLC. For the creation of two calibration sets, six tablets per batch
were weighed %(w/w), ground, and doped with different caffeine contents (0, 2, 4, 6, 8, and 10%). Thus, a
total of 36 and 24 calibration samples containing caffeine between 0 to 10%(w/w) was created for NIR and
Raman models, respectively. Diffuse reflectance near-infrared spectra of pure caffeine, ground tablets (con-
taining only ASA, DIP or PAR, and their excipients) as well as all ground and mixed calibration (36) and
prediction (8) samples, were obtained using a near infrared Qinterline model DairyQuant FT-NIR. Each
spectrum was profiled from 32 scans within the 1100-2500 nm range and a 4 nm resolution. Three spectra
were recorded for each sample.

Raman scattering spectra of pure caffeine, ground tablets (containing only ASA, DIP or PAR and their
excipients), as well as all grounded and mixed calibration (24) and prediction (9) samples, were obtained us-
ing a Metrohm Instant Raman Analyzer (MIRA), with laser wavelength in 785 nm, resolution of 8 cm™!, and
spectral range from 400 to 2300 cm™!. Three spectra were recorded for each individual sample.

Chemometric data treatment. The two original spectroscopic profiles were organized into matrix format
Xnir (IxJ), Xraman (NxM), where each replicate was considered as one sample. Data analyses were carried out
using Matlab v.2017 software (The MathWorks, Co., Natick, MA, USA) with the PLS Toolbox computa-
tional package (Eigenvector Research, Inc. — PLS Toolbox version 8.61.) [36]. Two pretreatments were ap-
plied to both original data matrices (Xnir, Xraman): (1) Savitzky—Golay smoothing with a window size of 7 and
11 points, respectively, and (ii) first derivative [37]. The partial least squares method (PLS) was used as a
regression method for modeling [38]. Variable selection was carried out by the ordered predictors selection
method (OPS) [39] and followed by visual inspection with the aid of pure spectra of caffeine and the spectra of
ground tablets (containing only ASA, DIP or PAR and their excipients).

Results and discussion. PLS model with NIR data. The original NIR spectra of all calibration samples
and the ground tablets of prediction samples were organized into a format Xy matrix (132x661) containing
132 replicates (/) and 661 wavelengths (J). Figure 1 shows both original and pretreated spectra (Xp1).

For the development of the regression model to predict caffeine contents %(w/w), the dependent varia-
bles (v) used for calibration samples ranged from 0 to 10 %(w/w), while the prediction samples were calcu-
lated using the ratio between caffeine mass, indicated on the drug description leaflet, and the total mass of
each tablet (nominal values). The pretreated NIR spectra (Xp1) were established as independent variables.

The data set was split as follows: 36 samples (108 spectra) were used as calibration set, while eight dif-
ferent external samples, corresponding to 24 spectra, were utilized for external validation. Leave-five-out
cross-validation was the method used to select the number of latent variables in the model (15 replicates of
five samples were withdrawn and calculated at a time).

From the initial 661 variables, the OPS algorithm and the visual selection identified 17 regions (100
wavelengths) to build the PLS-NIR model, as shown by the vertical lines in Fig. 2.

Table 1 displays the regions defined by the variables selected for the calibration model as well as the
corresponding vibrational modes and charts. Considering the first row of Table 1, the variables ranging from
1138 to 1142 were selected for the calibration model and were related to the 3™ and 2™ overtones of the CH
or CHj3 charts.
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Fig. 1. Original (a) and pretreated (b) diffuse reflectance near-infrared spectra of all samples.
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Fig. 2. Selected variables for the PLS caffeine prediction model using NIR data. The spectra
are from pure caffeine (1), ASA (2), DIP (3), and PARA (4) ground tablets.

TABLE 1. Regions Selected by OPS to Construct the PLS Model with NIR Data

Regions | General ranges, Vibrational modes Charts
selected nm

1 1138-1142* 3 and 2™ overtone of C—H CH;

2 1155-1157* 2" overtone of C—H CHj3 and CH;

3 1173-1181* 2™ overtone of C—-H CH and CH;

4 1213-1218 2" overtone of C—H CH

5 1244-1245 2" overtone of C—H -

6 1312-1340% 2" overtone of C-H —~

7 1456-1468* 2™ overtone of O-H, C—H, N-H C-H, CONH,, ROH

8 1716-1721* 1* overtone of C-H CH, CH;, CH;3

9 1736-1745%* 1% overtone of C—-H CH, CH,, SH3

10 1991-1994 1% overtone of C—H and combination bands -

11 2022-2038 1% overtone of C O and O-H combination bands -

12 2080-2090 O—H combination bands ROH, CONH,(R)

13 2155-2168 N-H, O-H and C-C combination bands -

14 2196-2239* N-H, O-H and C-C combination bands CH3;, CC, CHO, RNH;
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Continue Table 1

Regions |General ranges, Vibrational modes Charts
selected nm
15 2286-2315* C-H + C-H and C — H + C-C combination bands H,O, CH, CH,, CH;
16 2400-2410 C-H + C-H combination bands CH, CHy, CH;
17 2426-2432* C—H + C-H combination bands CH and CH;

* Regions selected as pure caffeine [40].

TABLE 2. Calculated and Predicted Caffeine Contents from the PLS Model with NIR Data

Prediction samples Calculated %% (w/w)* Predicted %(w/w)**
Sniri (ASA + caffeine) 7.70 6.60 +0.10
Snir2 (ASA + caffeine) 9.96 10.51 £ 0.66
Snirs (ASA + caffeine) 9.87 10.01 £0.23
Snira (DIP + caffeine) 5.11 5.46 £0.25
Snirs (DIP + caffeine) 9.99 9.63 £0.05
Snirs (DIP + caffeine) 4.78 5.68+0.23
Snir7 (PARA + caffeine) 8.50 8.90+0.15
Snirs (PARA + caffeine) 8.30 7.36 +0.20

*Using the mass described on the drug description leaflet and the measured mass of the entire tablets.
**Standard deviation between replicates.

The number of latent variables used in this PLS model was determined by the root mean square error of
cross validation (RMSECV) values. The four latent variables (4 LV) could explain 95.32 and 98.23% of the
variance used in blocks Y and X, respectively. So, the calculated PLS model presented a RMSECV of 0.79
and a cross validation correlation coefficient (r,.) of 0.97. The model was validated by the external data set
indicated in Table 2, and the root mean square error of prediction (RMSEP) was 0.74. Table 2 also shows the
calculated and predicted values of the prediction samples for the PLS model.
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Fig. 3. Calculated vs. predicted values of caffeine contents for the calibration (o)
and prediction (a) sets in the PLS model using NIR data

Figure 3 presents the calculated values for caffeine %(w/w) and the respective values estimated from
the cross-validation step constructed with NIR data. The predicted values for the external validation samples
were also included. In general, articles describing the use of NIR to determine dipyrone [14], paracetamol
[41, 42], and acetylsalicylic acid [12] hardly mention the main absorption bands of these compounds, but
certain studies pointed out the entire regions for caffeine (1560—2500 nm), paracetamol (1110-2500 nm) [32],
dipyrone (1100-1250, 1250-1550; 1650, 1675, 1934, and 2139 nm) [43, 15], and acetylsalicylic acid
(1587-1695 nm) [44].

Thus, the NIR spectra of pure caffeine was plotted together with the spectra of ASA, DIP, and PARA
ground tablets (Fig. 2) to identify and understand the wavelengths that can validate the PLS model.
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Ten of the seventeen selected bands, presented in Table 1 (1, 2, 3,6, 7, 8, 9, 14, 15, and 17), appear to be
from pure caffeine spectra in Fig. 2. All these caffeine bands are also listed in the work of Ribeiro et al. [40].
These results have shown that the built model has several regions of caffeine absorption, thus enhancing ac-
curacy and reliability of the predictions.

PLS model with Raman scattering data. The original Raman spectra of almost all calibration samples
and the ground tablets for caffeine prediction were organized into a matrix format, Xraman (99x1901). The
matrix contained 99 replicates (V) and 1901 wavenumber (M, cm™). Figure 4 portrays the original and the
pretreated Raman spectra (X;2).

The PLS model development to predict caffeine content with Raman data followed a similar trend to the
model with NIR data, where the dependent variables () used for (i) calibration samples ranged from 0
to 10 %(w/w) (doped samples), while the ratio between the caffeine mass on the drug description leaflet and
the total mass of each table was utilized for the (ii) prediction samples. The pretreated Raman spectra (ma-
trix Xp2) were employed as independent variables.

The data set was split as follows: 24 samples (72 spectra) were used as a calibration set, and nine exter-
nal samples, corresponding to 27 spectra, were used for external validation. Leave—five-out cross-validation
was the method used to select the number of latent variables in the model (15 replicates of five samples were
withdrawn and calculated at a time).

From the initial 1901 variables, the OPS algorithm followed by the visual selection identified 11 regions
(150 wavenumbers) to build the PLS model as indicated by the vertical lines in Fig. 5.

400 800 1200 1600 2000 2400 v, cm ™!

2000 2400 v, cm™!

400 800 1200

Fig. 4. Original (a) and pretreated (b) spectra of almost all samples analyzed by Raman scattering.
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Fig. 5. Selected variables for the PLS caffeine prediction model using Raman scattering data.
The spectra are from pure caffeine (1), ASA (2), DIP (3), and PARA (4) ground tablets.
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The Raman scattering spectra, from 400 to 2300 cm ™!, of pure caffeine and ground tablets containing ei-
ther ASA, DIP or PARA are shown in Fig. 5. The wavenumbers of the 11 bands selected from the Raman
spectra for the calibration model can be seen in Table 3. Vibrational assignments are provided for pure caf-

feine spectra from [45, 46] and Fig. 5.

TABLE 3. Regions Selected by OPS for the Construction of the Raman PLS Model

Regions selected | Wavenumber, cm™! Vibrational assignments
1 473-476, m d(pyrimidine ring) + 8(CNO) + 8(CH)
2 485-492, m d(pyrimidine ring) + (CNO) + 8(CH)
3 540-550, s 8(pyrimidine ring) + 8(CNC) + p(CH3)
4 559-579, s d(pyrimidine ring) + 8(CNC) + p(CH3)
5 723-733, m d(pyrimidine, imidazole ring) + 8(CH3) + p(CH3)
6 916-921, w p(CHs)
7 930-947, w p(CHz3)
8 1076-1085, m O(CH-N)
9 1274-1275, m v(C-N) + p(CH3)
10 1322-1324, s v(imidazole ring)
11 1679-1729, s v(C=0) in phase

N o te. 8, Deformation; v, stretching; p, bending; s, strong; m, medium; w, weak.

The PLS model with Raman scattering data was also constructed with four latent variables (4 LV), us-
ing RMSECYV values as parameters. These 4 LV could explain 95.19 and 97.44% of the variance used in
blocks Y and X, respectively. The model presented a RMSECV of 0.78 and a cross-validation correlation
coefficient (7,.) of 0.97 and was validated by the external data set (Table 4) with RMSEP of 1.00. Table 4 al-
so shows the calculated and predicted values of the prediction samples for the PLS-Raman model.

Figure 6 shows the calculated values for caffeine %(w/w) and the respective values estimated from the
cross-validation step constructed with Raman scattering data. The predicted values for the external validation
samples were also included to highlight their values within the range of the calibration samples.

TABLE 4. Calculated and Predicted Caffeine Contents from the PLS-Raman Regression Model

Prediction samples Calculated %(w/w)* | Predicted caffeine
contents %(w/w)**
Sri1 (DIP + dexclopheniramine maleate + caffeine) 4.42 3.57+0.00
Sr2 (ASA + caffeine) 7.65 6.45+1.08
Srs (DIP + caffeine) 9.92 11.51 £ 0.62
Sr4 (ASA + Phenylephrine + caffeine) 4.43 3.19+£0.36
Srs (DIP + orphenandrine citrate + caffeine) 7.40 6.20+0.12
Sre (ASA + caffeine) 5.00 5.91 +£0.38
Sr7 (ASA + caffeine) 4.90 5.31+0.40
Srg (DIP + orphenandrine citrate + caffeine) 7.71 7.77 £0.67
Sro (PARA + diclofenac + carisoprodol + caffeine) 3.77 3.79£0.51

*Using the mass described on the drug description leaflet and the measured mass of the entire tablets.
**Standard deviation between triplicates.

At this moment, a discussion on the spectral bands used by the PLS-Raman model to predict caffeine
contents is necessary. Two previous works on Raman spectrum of caffeine assisted on the interpretation of
the main spreading bands. Pavel et al. [45] studied both theoretical and pH dependent surface enhanced Ra-
man spectroscopy of caffeine, while Edwards et al. [46] focused on the characterization and discrimination
between caffeine, theobromine, and theophylline by Raman spectroscopy. In both works, complete tables of
the pure caffeine bands and its vibrational assignments are presented.

According to these tables [45, 46] and the pure spectra of caffeine in Fig. 5, it could be verified that the
11 spectroscopic bands listed in Table 3 correspond to caffeine and, therefore, the mathematical model de-
scribed here has elevated predictive power.
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Fig. 6. Calculated vs. predicted values of caffeine contents for the calibration (o)
and prediction (a) sets in the PLS model using Raman scattering data.

Conclusions. Although the two partial least square models were not performed with the same batches of
samples (2018/2019 and 2019/2020), the strategy of doping different ground tablets with caffeine contents in
the calibration step proved to be promising for further prediction of commercial samples. The predictive
power of the two partial least square models also demonstrated the importance of the variable selection step,
since the matrices were noticeably complex (models built with acetylsalicylic acid, dipyrone, paracetamol,
and different excipients). Comparison of the selected variables with the pure caffeine spectra demonstrated
that practically all regions selected for near infrared and Raman models were strictly linked to the desired
molecule. Even though a significant difference between the quality of the two models was expected, since
one of them was constructed in a bench equipment and had a higher resolution compared to the other porta-
ble one, both presented practically identical outcomes (RMSECV, RMSEP and r.,).
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