Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

NON-INVASIVE DIAGNOSTICS OF LUNG CANCER BASED ON WHOLE BLOOD SURFACE-ENHANCED RAMAN SPECTROSCOPY AND DEEP MACHINE LEARNING

Abstract

Combining deep machine learning with silver nanoparticle (Ag NP)-based surface-enhanced Raman spectroscopy (SERS), we have developed a novel method for whole blood analysis for cancer detection applications. The whole blood was collected from two groups: one group of patients (n = 26) with lung cancer and another group of healthy volunteers (n = 45). The logistic regression (LR), k-nearest neighbor (KNN), decision tree (DT), and random forest (RF) algorithms were employed to develop a diagnostic model using the same spectral data. The results show that the diagnostic accuracy of LR, KNN, DT, and RF models was 87, 66, 77, and 83%, respectively. LR is superior to other algorithms in the SERS spectra classification of whole blood. We therefore believe that this proposed strategy will have great clinical potential for SERS technology combined with LR and act as a complementary method for the detection of lung cancer.

About the Authors

C. Chen
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University
China

Cairou Chen

Fuzhou, Fujian



Q. Zhang
School of Informatics, Xiamen University
China

Qibin Zhang

Xiamen, Fujian Province



D. Lu
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University
China

Dechan Lu

Fuzhou, Fujian



J. Liu
School of Informatics, Xiamen University
China

Jiatong Liu

Xiamen, Fujian Province



Y. Lu
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University
China

Yudong Lu

Fuzhou, Fujian



K. Liu
School of Informatics, Xiamen University
China

Kunhong Liu

Xiamen, Fujian Province



References

1. K. A. Cronin, A. J. Lake, S. Scott, R. L. Sherman, A. M. Noone, N. Howlader, S. J. Henley, R. N. Anderson, A. U. Firth, J. Ma, B. A. Kohler, A. Jemal, Cancer, 124, 2785–2800 (2018).

2. J. Bossert, M. Ludwig, P. Wronski, J. Koetsenruijter, K. Krug, M. Villalobos, J. Jacob, J. Walker, M. Thomas, M. Wensing, NP J. Primary Care Respiratory Med., 31, 2 (2021).

3. C. Fang, D. Xu, J. Su, J. R. Dry, B. Linghu, NP J. Digital Med., 4, 14 (2021).

4. N. Guibert, A. Pradines, G. Favre, J. Mazieres, Eur. Respir. Rev., 29, 190052 (2020).

5. E. Ococks, A. M. Frankell, N. Masque Soler, N. Grehan, A. Northrop, H. Coles, A. M. Redmond, G. Devonshire, J. M. J. Weaver, C. Hughes, K. Lehovsky, A. Blasko, B. Nutzinger, O. Consortium, R. C. Fitzgerald, E. Smyth, Ann. Oncol., 32, 522–532 (2021).

6. W. Yu, J. Hurley, D. Roberts, S. K. Chakrabortty, D. Enderle, M. Noerholm, X. O. Breakefield, J. K. Skog, Ann. Oncol., 32, 466–477 (2021).

7. S. Jia, L. Xie, L. Li, Y. Qian, J. Wang, S. Wang, W. Zhang, B. Qian, Expert Rev. Mol. Diagn., 21, 417–427 (2021).

8. R. Nooreldeen, H. Bach, Int. J. Mol. Sci., 22 (2021).

9. Y. Moro Awelisah, G. Li, M. Ijaz, L. Lin, Opt. Laser Technol., 133 (2021).

10. F. Tustumi, F. R. Takeda, M. S. Viyuela, J. B. da Cruz Junior, A. Brandao, R. A. A. Sallum, U. Ribeiro, Jr., I. Cecconello, J. Surg. Oncol., 121, 784–794 (2020).

11. M. S. Wrobel, J. H. Kim, P. Raj, I. Barman, J. Smulko, Biosens. Bioelectron., 180, 113115 (2021).

12. A. Germond, T. Ichimura, T. Horinouchi, H. Fujita, C. Furusawa, T. M. Watanabe, Commun. Biol., 1, 85 (2018).

13. S. Pahlow, S. Meisel, D. Cialla-May, K. Weber, P. Rosch, J. Popp, Adv. Drug Deliv. Rev., 89, 105–120 (2015).

14. A. Kozik, M. Pavlova, I. Petrov, V. Bychkov, L. Kim, E. Dorozhko, C. Cheng, R. D. Rodriguez, E. Sheremet, Anal. Chim. Acta, 1187, 338978 (2021).

15. L. Shen, Y. Du, N. Wei, Q. Li, S. Li, T. Sun, S. Xu, H. Wang, X. Man, B. Han, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 237, 118364 (2020).

16. V. Karunakaran, V. N. Saritha, M. M. Joseph, J. B. Nair, G. Saranya, K. G. Raghu, K. Sujathan, K. S. Kumar, K. K. Maiti, Nanomedicine, 29, 102276 (2020).

17. X. Li, T. Yang, S. Li, J. Yao, Y. Song, D. Wang, J. Ding, Laser Phys. Lett., 12, 115603 (2015).

18. L. Guo, Y. Li, F. Huang, J. Dong, F. Li, X. Yang, S. Zhu, M. Yang, J. Innov. Opt. Health Sci., 12, 1950003 (2019).

19. S. Li, Z. Guo, Z. Liu, Expert Rev. Anticancer Ther., 15, 5–7 (2015).

20. D. Lin, J. Pan, H. Huang, G. Chen, S. Qiu, H. Shi, W. Chen, Y. Yu, S. Feng, R. Chen, Sci. Rep., 4, 4751 (2014).

21. E. Vargas-Obieta, J. C. Martinez-Espinosa, B. E. Martinez-Zerega, L. F. Jave-Suarez, A. AguilarLemarroy, J. L. Gonzalez-Solis, Lasers Med. Sci., 31, 1317–1324 (2016).

22. X. Li, T. Yang, S. Li, D. Wang, Y. Song, K. Yu, J. Raman Spectr., 47, 917–925 (2016).

23. J. Liu, M. Osadchy, L. Ashton, M. Foster, C. J. Solomon, S. J. Gibson, Analyst, 142, 4067–4074 (2017).

24. H. Sadeghi, H. S. Braun, B. Panti, G. Opsomer, O. Bogado Pascottini, PloS One, 17, e0263409 (2022).

25. G. Pinkas, Y. Karny, A. Malachi, G. Barkai, G. Bachar, V. Aharonson, IEEE Open J. Eng. Med. Biol., 1, 268–274 (2020).

26. M. A. Haile, E. Zhu, C. Hsu, N. Bradley, Struct. Health Monitor., 19, 1340–1350 (2019).

27. B. Yan, B. Li, Z. Wen, X. Luo, L. Xue, L. Li, BMC Cancer, 15, 650 (2015).

28. S. Feng, D. Lin, J. Lin, B. Li, Z. Huang, G. Chen, W. Zhang, L. Wang, J. Pan, R. Chen, H. Zeng, Analyst, 138, 3967–3974 (2013).

29. R. Zhang, Y. Chen, G. Zhou, B. Sun, Y. Li, Z. Chen, Evid. Based Complement. Alternat. Med., 2020, 8859558 (2020).

30. M. A. Mahfouz, A. Shoukry, M. A. Ismail, Artific. Intell. Med., 111, 101985 (2021).

31. C. Kingsford, S. L. Salzberg, Nat. Biotech., 26, 1011–1013 (2008).

32. T. Shi, S. Horvath, J. Comput. Graph. Stat., 15, 118–138 (2012).

33. A. C. S. Talari, Z. Movasaghi, S. Rehman, I. U. Rehman, Appl. Spectrosc. Rev., 50, 46–111 (2014).


Review

For citations:


Chen C., Zhang Q., Lu D., Liu J., Lu Y., Liu K. NON-INVASIVE DIAGNOSTICS OF LUNG CANCER BASED ON WHOLE BLOOD SURFACE-ENHANCED RAMAN SPECTROSCOPY AND DEEP MACHINE LEARNING. Zhurnal Prikladnoii Spektroskopii. 2022;89(5):674-681.

Views: 191


ISSN 0514-7506 (Print)