Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

ESTIMATING THE ACQUISITION PRICE OF ENSHI YULU YOUNG TEA SHOOTS USING NEAR INFRARED SPECTROSCOPY BY THE BACK PROPAGATION ARTIFICIAL NEURAL NETWORK MODEL IN CONJUNCTION WITH BACKWARD INTERVAL PARTIAL LEAST SQUARES ALGORITHM

Abstract

Near infrared spectroscopy and the back propagation artificial neural network model in conjunction with backward interval partial least squares algorithm were used to estimate the purchasing price of Enshi yulu young tea shoots. The near infrared spectra regions most relevant to the tea shoots price model (5700.5-5935.8, 7613.6-7848.9, 8091.8-8327.1, 8331-8566.2, 9287.5-9522.5, and 9526.6-9761.9 cm-1) were selected using backward interval partial least squares algorithm. The first five principal components that explained 99.96% of the variability in those selected spectral data were then used to calibrate the back propagation artificial neural tea shoots purchasing price model. The performance of this model (coefficient of determination for prediction 0.9724; root mean square error of prediction 4.727) was superior to those of the back propagation artificial neural model (coefficient of determination for prediction 0.8653, root mean square error of prediction 5.125) and the backward interval partial least squares model (coefficient of determination for prediction 0.5932, root mean square error of prediction 25.125). The acquisition price model with the combined backward interval partial least squares-back propagation artificial neural network algorithms can evaluate the price of Enshi yulu tea shoots accurately, quickly and objectively.

About the Authors

Sh. -P. Wang
Institute of Fruit and Tea, Hubei Academy of Agricultural Science
Russian Federation


Z. -M. Gong
Institute of Fruit and Tea, Hubei Academy of Agricultural Science
Russian Federation


X. -Zh. Su
Enshi Agricultural Bureau
Russian Federation


J. -Zh. Liao
Enshi Agricultural Bureau
Russian Federation


References

1. T. Bahorun, A. Luximon-Ramma, T. Gunness, D. Sookar, S. Bhoyroo, R. Jugessur, D. Reebye, K. Googoolye, A. Crozier, O. Aruoma, Toxicology, 278, 68-74 (2010).

2. X. F. Zhou, Z. L.Yang, S. A. Haughey, P. Galvin-King, L. J. Han, C. T. Elliott, Food Chem., 189, 13-18 (2015).

3. X. M. Liu, J. S. Liu, Spectrosc. Lett., 47, 729-739 (2014).

4. C. F. Wu, Z. G. Wu, R. A. Hashmonay, S. Y. Chang, Y. S. Wu, C. P. Chao, M. J. Chase, R. H. Kagann, Atm. Environ., 82, 335-342 (2014).

5. M. A. Tavanaie, N. Esmaeilian, M. R. M. Mojtahedi, Dyes Pigments, 114, 267-272 (2015).

6. M. Blanco, A. Peguero, TrAC Trend. Anal. Chem., 29, 1127-1136 (2010).

7. M. J. Lee, D. Y. Seo, H. E. Lee, W. S. Kim, M. Y. Jeong, G. J. Choi, Int. J. Pharm., 403, 66-72 (2011).

8. M. S. Lee, Y. S. Hwang, J. W. Lee, M. G. Choung, Food Chem., 158, 351-357 (2014).

9. Y. Huang, G. R. Du, Y. J. Ma, J. Zhou, Optik, 126, 2030-2034 (2015).

10. W. He, J. Zhou, H. Cheng, L. Y. Wang, K. Wei, W. F. Wang, X. H. Li, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 86, 399-404 (2012).

11. J. Y. Shi, X. B. Zou, J. W. Zhao, H. P. Mao, J. Infrared Millim.Waves, 30, 458-452 (2011).

12. Q. S. Chen, D. L. Zhang, W. X. Pan, H. H. Li, K. Urmila, J. W. Zhao, Trend. Food Sci. Technol., 43, 63-82 (2015).

13. D. Ren, F. F. Qu, K. Lv, Z. Zhang, H. L. Xu, X. Y. Wang, Neurocomputing, 162, 101-111 (2015).

14. Z. Z. Zhang, S. P. Wang, X. C. Wan, S. H. Yan, Spectrosc. Eur., 23, 17-21 (2011).

15. J. Y. Shi, X. B. Zou, H. Mel, K. L.Wang, X. Wang, H. Chen, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 94, 271-276 (2012).

16. D. Wu, Y. P. He, C. Nie, F. Cao, Y. D. Bao, Anal. Chim. Acta, 659, 229-237 (2010).

17. A. E. Ghaziri, E. M. Qannari, Chemometr. Intel. Lab. Syst., 148, 95-105 (2015).

18. Y. L. Yan, B. Chen, D. Z. Zhu, Near Infrared Spectroscopy Principles, Technologies and Applications, China Light Industry Press, Beijing, 112-114 (2013).

19. Y. D. Liu, X. D. Sun, A. G. Ouyang, LWT-Food Sci. Technol., 43, 602-607 (2010).

20. J. Wu, W. Luo, X. K. Wang, Q. Cheng, C. G. Sun, H. Li, J. Pharm. Biomed. Anal., 80, 186-191 (2013).


Review

For citations:


Wang Sh.-., Gong Z.-., Su X.-., Liao J.-. ESTIMATING THE ACQUISITION PRICE OF ENSHI YULU YOUNG TEA SHOOTS USING NEAR INFRARED SPECTROSCOPY BY THE BACK PROPAGATION ARTIFICIAL NEURAL NETWORK MODEL IN CONJUNCTION WITH BACKWARD INTERVAL PARTIAL LEAST SQUARES ALGORITHM. Zhurnal Prikladnoii Spektroskopii. 2017;84(4):670(1)-670(6). (In Russ.)

Views: 263


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)