Molecular Oxygen Migration in the Isolated β Chains of Human Hemoglobin as Revealed by Molecular Dynamics Simulations and Laser Kinetic Spectroscopy
Abstract
Molecular dynamics simulations and laser kinetic absorption spectroscopy have been used to study the molecular oxygen (O2) migration in the isolated β chains of human hemoglobin. The insertion of xenon (Xe) atoms into the isolated chains has been found to decrease the time constant of the slowest component of the geminate O2 rebinding to the protein. This change is caused by a decrease in an intra-protein space available for the O2 migration after the insertion of the inert gas into the Xe-binding sites of the protein. The molecular dynamics simulations have revealed that during the course of the geminate recombination to the isolated β-chains, the O2 molecule visits both Xe2 and Xe1 site of the protein. The amino acids involved in the formation of the primary and secondary docking sites of the protein have been determined. The obtained results are important for understanding the mechanism of O2 binding by both native tetrameric human hemoglobin and artificial oxygen carriers based on heme proteins.
About the Authors
S. V. LepeshkevichBelarus
Minsk
M. V. Parkhats
Belarus
Minsk
S. A. Biziuk
Belarus
Minsk
A. M. Lemeza
Belarus
Minsk
S. N. Gilevich
Belarus
Minsk
B. M. Dzhagarov
Belarus
Minsk
References
1. E. Antonini, M. Brunori. Hemoglobin and Myoglobin in their Reactions with Ligands, North-Holland Publication Company, Amsterdam, London (1971)
2. M. F. Perutz. Nature, 228 (1970) 726—739
3. Q. H. Gibson. Biochem. J., 71 (1959) 293—303
4. J. S. Philo, J. W. Lary. J. Biol. Chem., 265 (1990) 139—143
5. I. Birukou, R. L. Schweers, J. S. Olson. J. Biol. Chem., 285 (2010) 8840—8854
6. S. V. Lepeshkevich, N. V. Konovalova, B. M. Dzhagarov. Biochem. Mos., 68, N 5 (2003) 551—558
7. B. M. Dzhagarov, S. V. Lepeshkevich. Chem. Phys. Lett., 390, N 1-3 (2004) 59—64
8. S. V. Lepeshkevich, N. V. Konovalova, I. I. Stepuro, B. M. Dzhagarov. J. Mol. Struct., 735-736 (2005) 307—313
9. S. V. Lepeshkevich, B. M. Dzhagarov. FEBS J., 272, N 23 (2005) 6109—6119
10. D. A. Duddell, R. J. Morris, N. J. Muttucumaru, J. T. Richards. Photochem. Photobiol., 31 (1980) 479—484
11. R. J. Morris, Q. H. Gibson, M. Ikeda-Saito, T. Yonetani. J. Biol. Chem., 259 (1984) 6701—6703
12. D. A. Chernoff, R. M. Hochstrasser, A. W. Steele. Proc. Natl. Acad. Sci. U.S.A., 77 (1980) 5606—5610
13. B. M. Dzhagarov, V. A. Galievsky, N. N. Kruk, M. D. Yakutovich. Dokl. Akad. Nauk, 366 (1999) 38—41
14. S. V. Lepeshkevich, J. Karpiuk, I. V. Sazanovich, B. M. Dzhagarov. Biochemistry, 43, N 6 (2004) 1675—1684
15. Q. H. Gibson. Biochemistry, 38, N 16 (1999) 5191—5199
16. W. A. Eaton, L. K. Hanson, P. J. Stephens, J. C. Sutherland, J. B. R. Dunn. J. Am. Chem. Soc., 100, N 16 (1978) 4991—5003
17. B. I. Greene, R. M. Hochstrasser, R. B. Weisman, W. A. Eaton. Proc. Natl. Acad. Sci. U.S.A., 75, N 11 (1978) 5255—5259
18. S. V. Lepeshkevich, I. V. Sazanovich, M. V. Parkhats, S. N. Gilevich, B. M. Dzhagarov. Chem. Sci., 12, N 20 (2021) 7033—7047
19. A. Pesce, M. Nardini, S. Dewilde, L. Capece, M. A. Marti', S. Congia, M. D. Salter, G. C. Blouin, D. A. Estrin, P. Ascenzi, L. Moens, M. Bolognesi, J. S. Olson. J. Biol. Chem., 286 (2011) 5347—5358
20. B. A. Springer, S. G. Sligar, J. S. Olson, G. N. Phillips Jr. Chem. Rev., 94 (1994) 699—714
21. J. M. Friedman. Science, 228 (1985) 1273—1280
22. C. Savino, A. E. Miele, F. Draghi, K. A. Johnson, G. Sciara, M. Brunori, B. Vallone. Biopolymers, 91, N 12 (2009) 1097—1107
23. S. V. Lepeshkevich, S. A. Biziuk, A. M. Lemeza, B. M. Dzhagarov. Biochim. Biophys. Acta, 1814, N 10 (2011) 1279—1288
24. M. F. Lucas, V. Guallar. Biophys. J., 102 (2012) 887—896
25. M. S. Shadrina, G. H. Peslherbe, A. M. English. Biochemistry, 54 (2015) 5268—5278
26. M. S. Shadrina, A. M. English, G. H. Peslherbe. J. Am. Chem. Soc., 134 (2012) 11177—11184
27. M. Takayanagi, I. Kurisaki, M. Nagaoka. J. Phys. Chem. B, 117 (2013) 6082—6091
28. S. V. Lepeshkevich, S. N. Gilevich, M. V. Parkhats, B. M. Dzhagarov. Biochim. Biophys. Acta, 1864, N 9 (2016) 1110—1121
29. E. Bucci, C. Fronticelli. J. Biol. Chem., 240 (1965) 551—552
30. R. C. Neuman Jr., W. Kauzmann, A. Zipp. J. Phys. Chem., 77 (1973) 2687—2691
31. S. V. Lepeshkevich, B. M. Dzhagarov. Biochim. Biophys. Acta, 1794 (2009) 103—109
32. S. V. Lepeshkevich, M. V. Parkhats, A. S. Stasheuski, V. V. Britikov, E. S. Jarnikova, S. A. Usanov, B. M. Dzhagarov. J. Phys. Chem. A, 118, N 10 (2014) 1864—1878
33. S. V. Lepeshkevich, A. L. Poznyak, B. M. Dzhagarov. J. Appl. Spectr., 72, N 5 (2005) 735—743
34. S. V. Lepeshkevich, M. V. Parkhats, I. I. Stepuro, B. M. Dzhagarov. Biochim. Biophys. Acta, 1794, N 12 (2009) 1823—1830
35. H. J. C. Berendsen, D. Van der Spoel, R. Van Drunen. Comp. Phys. Commun., 91 (1995) 43—56
36. D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen. J. Comp. Chem., 26 (2005) 1701—1719
37. E. Lindahl, B. Hess, D. Van der Spoel. J. Mol. Mod., 7 (2001) 306—317
38. W. Humphrey, A. Dalke, K. Schulten. J. Mol. Graphics, 14 (1996) 33—38
39. Y. Cheng, T.-J. Shen, V. Simplaceanu, C. Ho. Biochemistry, 41 (2002) 11901—11913
40. I. Birukou, J. Soman, J. S. Olson. J. Biol. Chem., 286 (2011) 10515—10529
Review
For citations:
Lepeshkevich S.V., Parkhats M.V., Biziuk S.A., Lemeza A.M., Gilevich S.N., Dzhagarov B.M. Molecular Oxygen Migration in the Isolated β Chains of Human Hemoglobin as Revealed by Molecular Dynamics Simulations and Laser Kinetic Spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2023;90(3):361-369. (In Russ.)