Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Photoreactions Create Superconducting Materials

Abstract

One of the potentially transformative areas of scientific development is to achieve superconductivity at room temperature. Recently, the photochemical synthesis was carried out to prepare carbonaceous sulfur hydride (CSH) systems with room-temperature superconductivity at high pressure. In this work, we present a first-principles study aiming to unravel the photoreaction of sulfur with molecular hydrogen using the time-dependent excited-state molecular dynamics (TDESMD) methodology. Individual TDESMD trajectory provides details about reactions that lead to a number of allotropes of sulfur and their hydrogenated forms. Simulated mass spectra based on an ensemble of TDESMD trajectories provide the distribution of sulfanes along reaction pathways. It is found that the photoreaction starts with ring opening of cyclic S8, which may then react with two H radicals to form S8H2 as a result of the homolytic dissociation of H2. The sulfur cluster will undergo the elimination of small fragments, which can later recombine into a variety of sulfanes. The most abundant fragments generated along trajectories are H2S, S4H2, and S8H2. The final sulfur-bearing products are a mixture of sulfanes with various chains and rings. The mechanistic and conformational information obtained from this work allows us to better understand the photoreaction, and potentially, give insights into the preparation of high Tc materials using similar reactants.

About the Authors

Y. Han
North Dakota State University, Department of Chemistry and Biochemistry
United States

Yulun Han.

Fargo



D. Kilin
North Dakota State University, Department of Chemistry and Biochemistry
United States

Dmitri Kilin.

Fargo



References

1. A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, S. I. Shylin, Nature, 525, 73-76 (2015).

2. A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, et al., Nature, 569, 528-531 (2019).

3. M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, R. J. Hemley, Phys. Rev. Lett., 122, 027001 (2019).

4. I. Errea, F. Belli, L. Monacelli, A. Sanna, T. Koretsune, T. Tadano, R. Bianco, M. Calandra, R. Arita, F. Mauri, et al., Nature, 578, 66-69 (2020).

5. L. Zhang, Y. Wang, J. Lv, Y. Ma, Nature Rev. Mater., 2, 17005 (2017).

6. M. I. Eremets, I. A. Trojan, S. A. Medvedev, J. S. Tse, Y. Yao, Science, 319, 1506-1509 (2008).

7. Y. Sun, J. Lv, Y. Xie, H. Liu, Y. Ma, Phys. Rev. Lett., 123, 097001 (2019).

8. N. W. Ashcroft, Phys. Rev. Lett., 21, 1748-1749 (1968).

9. N. W. Ashcroft, Phys. Rev. Lett., 92, 187002 (2004).

10. J. A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, M. Eremets, Phys. Rep., 856, 1-78 (2020).

11. E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K. V. Lawler, А. Salamat, R. P. Dias, Nature, 586, 373-377 (2020).

12. B. Eckert, R. Schumacher, H. J. Jodl, P. Foggi, High Pressure Res., 17, 113-146 (2000).

13. J. C. Vincent, M. Muuronen, K. C. Pearce, L. N. Mohanam, E. Tapavicza, F. Furche, J. Phys. Chem. Lett., 7, 4185-4190 (2016).

14. S. M. Parker, S. Roy, F. Furche, Phys. Chem. Chem. Phys., 21, 18999-19010 (2019).

15. C. Cisneros, T. Thompson, N. Baluyot, A. C. Smith, E. Tapavicza, Phys. Chem. Chem. Phys., 19, 5763-5777 (2017).

16. M. Muuronen, S. M. Parker, E. Berardo, A. Le, M. A. Zwijnenburg, F. Furche, Chem. Sci., 8, 2179-2183 (2017).

17. Y. Zhang, L. Li, S. Tretiak, T. Nelson, J. Chem. Theory Comp., 16, 2053-2064 (2020).

18. A. E. Sifain, B. J. Gifford, D. W. Gao, L. Lystrom, T. R. Nelson, S. Tretiak, J. Phys. Chem. A, 122, 9403-9411 (2018).

19. W. Malone, B. Nebgen, A. White, Y. Zhang, H. Song, J. A. Bjorgaard, A. E. Sifain, B. Rodriguez-Hernandez, V. M. Freixas, S. Fernandez-Alberti, et al., J. Chem. Theory Comp., 16, 5771-5783 (2020).

20. L. Lystrom, Y. Zhang, S. Tretiak, T. Nelson, J. Phys. Chem. A, 122, 6055-6061 (2018).

21. I. I. Rabi, Phys. Rev., 51, 652-654 (1937).

22. I. I. Rabi, N. F. Ramsey, J. Schwinger, Rev. Modern Phys., 26, 167-171 (1954).

23. J. C. Tully, J. Chem. Phys., 93, 1061-1071 (1990).

24. J. C. Tully, J. Chem. Phys., 137, 22A301 (2012).

25. S. Hammes-Schiffer, J. C. Tully, J. Chem. Phys., 101, 4657-4667 (1994).

26. Y. Han, B. Rasulev, D. S. Kilin, J. Phys. Chem. Lett., 8, 3185-3192 (2017).

27. Y. Han, K. Anderson, E. K. Hobbie, P. Boudjouk, D. S. Kilin, J. Phys. Chem. Lett., 9, 4349-4354 (2018).

28. Y. Han, D. S. Kilin, P. S. May, M. T. Berry, Q. Meng, Organometallics, 35, 3461-3473 (2016).

29. Y. Han, Q. Meng, B. Rasulev, P. S. May, M. T. Berry, D. S. Kilin, J. Chem. Theory Comp., 13, 4281-4296 (2017).

30. Y. Han, Q. Meng, B. Rasulev, P. S. May, M. T. Berry, D. S. Kilin, J. Phys. Chem. A, 119, 10838-10848 (2015).

31. B. Disrud, Y. Han, D. S. Kilin, Mol. Phys., 115, 674-682 (2017).

32. W. Kohn, L. J. Sham, Phys. Rev., 140, A1133-A1138 (1965).

33. G. Kresse, J. Hafner, Phys. Rev. B, 47, 558-561 (1993).

34. G. Kresse, J. Hafner, Phys. Rev. B, 49, 14251-14269 (1994).

35. G. Kresse, J. Furthmuller, Phys. Rev. B, 54, 11169-11186 (1996).

36. G. Kresse, J. Furthmuller, Comput. Mater. Sci., 6, 15-50 (1996).

37. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B, 46, 6671-6687 (1992).

38. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865-3868 (1996).

39. P. E. Blochl, Phys. Rev. B, 50, 17953-17979 (1994).

40. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 132, 154104 (2010).

41. A. Forde, T. Inerbaev, E. K. Hobbie, D. S. Kilin, J. Am. Chem. Soc., 141, 4388-4397 (2019).

42. N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, J. Cheminformat., 3, 33 (2011).

43. K. Momma, F. Izumi, J. Appl. Crystallogr., 44, 1272-1276 (2011).

44. B. Meyer, Chem. Rev., 64, 429-451 (1964).

45. S. J. Rettig, J. Trotter, Acta Crystallogr. C, 43, 2260-2262 (1987).

46. W. Tang, E. Sanville, G. Henkelman, J. Phys.: Condens. Matter, 21, 084204 (2009).

47. E. Sanville, S. D. Kenny, R. Smith, G. Henkelman, J. Comput. Chem., 28, 899-908 (2007).

48. G. Henkelman, A. Arnaldsson, H. Jonsson, Comput. Mater. Sci., 36, 354-360 (2006).


Review

For citations:


Han Y., Kilin D. Photoreactions Create Superconducting Materials. Zhurnal Prikladnoii Spektroskopii. 2023;90(3):520-1-520-8.

Views: 150


ISSN 0514-7506 (Print)