Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Solid-State Nuclear Magnetic Resonance 133Cs in CsPbBr3+Bi Semiconductor Perovskites

Abstract

The 133Cs NMR method was applied to study the structural characteristics and properties of perovskites at the atomic level in this work. CsBixPb1–xBr3 perovskites doped with bismuth at concentrations of 0.0059, 0.0072, 0.0120 were used as the studied samples. For applications in optics and photonics, the importance of high quality of materials was noted. The 133Cs NMR method showed a significant sensitivity for studying the manifestations of these concentrations of bismuth, which affect the stability of perovskites and their dynamic parameters.

About the Authors

A. N. Gavrilenko
Kazan State Power Engineering University
Russian Federation

Kazan



O. I. Gnezdilov
Kazan (Volga Region) Federal University
Russian Federation

Kazan



A. V. Emeline
St. Petersburg State University
Russian Federation

St. Petersburg



A. V. Shurukhina
St. Petersburg State University
Russian Federation

St. Petersburg



E. V. Schmidt
Kazan State Power Engineering University
Russian Federation

Kazan



A. F. Ivanov
Kazan State Power Engineering University
Russian Federation

Kazan



V. L. Matukhin
Kazan State Power Engineering University
Russian Federation

Kazan



References

1. A. V. Dmitriev, I. P. Zvyagin. Phys. Usp., 53, N 8 (2010) 789—803

2. E. I. Marchenko, S. A. Fateev, A. A. Petrov, E. A. Goodilin, A. B. Tarasov. Mendeleev Commun., 30 (2020) 279—281, doi: 10.1016/j.mencom.2020.05.005

3. Z.-J. Li, E. Hofman, A. H. Davis, A. Khammang, J. T. Wright, B. Dzikovski, R. W. Meulenberg, W. Zheng. Chem. Mater., 30 (2018) 6400—6409, doi: 10.1021/acs.chemmater.8b02657

4. S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar. Adv. Mater., 28 (2016) 6804

5. Y. Li, Z.-F. Shi, S. Li, L.-Z. Lei, H.-F. Ji, D. Wu, T.-T. Xu, Y.-T. Tian, X.-J. Li. J. Mater. Chem. C, 5 (2017) 8355—8360, doi: 10.1039/C7TC02137B

6. A. Kostopoulou, E. Kymakis, E. Stratakis. J. Mater. Chem. A, 6 (2018) 9765—9798, doi: 10.1039/C8TA01964A

7. V. B. Mykhaylyk, H. Kraus, V. Kapustianyk, H. J. Kim, P. Mercere, M. Rudko, P. Da Silva, O. Antonyak, M. Dendebera. Sci. Rep., 10 (2020) 8601, doi: 10.1038/s41598-020-65672-z

8. B. Luo, F. Li, K. Xu, Y. Guo, Y. Liu, Z. Xia, J. Z. Zhang. J. Mater. Chem. C, 7, N 10 (2019) 2781—2808

9. X. L. Miao, T. Qiu, S. F. Zhang, H. Ma, Y. Q. Hu, F. Bai, Z. C. Wu. J. Mater. Chem. C, 5, N 20 (2017) 4931—4939, doi: 10.1039/C7TC00417F

10. J. Yin, G. H. Ahmed, O. M. Bakr, J. L. Bredas, O. F. Mohammed. ACS Energy Lett., 4, N 3 (2019) 789—795, doi: 10.1021/acsenergylett.9b00209

11. M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel. Energy Environ. Sci., 9, N 6 (2016) 1989—1997, doi: 10.1039/c5ee03874j

12. R. Begum, M. R. Parida, A. L. Abdelhady, B. Murali, N. M. Alyami, G. H. Ahmed, M. N. Hedhili, O. M. Bakr, O. F. Mohammed. J. Am. Chem. Soc., 139, N 2 (2017) 731—737, doi: 10.1021/jacs.6b09575

13. C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli, M. Scheffler. Sci. Adv., 5 (2019) eaav0693, doi: 10.1126/sciadv.aav0693

14. L. Xu, S. Yuan, H. Zeng, J. Song. Mater. Today Nano, 6 (2019) 100036, doi: 10.1016/j.mtnano.2019.100036

15. R. Begum, M. R. Parida, A. L. Abdelhady, B. Murali, N. M. Alyami, G. H. Ahmed, M. N. Hedhili, O. M. Bakr, O. F. Mohammed. J. Am. Chem. Soc., 139 (2017) 731—737, doi: 10.1021/jacs.6b09575

16. O. A. Lozhkina, A. A. Murashkina, V. V. Shilovskikh, Y. V. Kapitonov, V. K. Ryabchuk, A. V. Emeline, T. Miyasaka. J. Phys. Chem. Lett., 9 (2018) 5408—5411, doi: 10.1021/acs.jpclett.8b02178

17. A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, O. M. Bakr. J. Phys. Chem. Lett., 7, N 2 (2016) 295—301, doi: 10.1021/acs.jpclett.5b02681

18. F. Aiello, S. Masi. Nanomaterials, 11, N 8 (2021) 2024, doi: 10.3390/nano11082024

19. V. V. Ogloblichev, V. L. Matukhin, I. Y. Arapova, E. V. Schmidt, R. R. Khusnutdinov. Appl. Magn. Res., 50 (2019) 619—625, doi: 10.1007/s00723-018-1096-9

20. V. L. Matukhin, A. N. Gavrilenko, E. V. Schmidt, S. B. Orlinskii, I. G. Sevastianov, S. O. Garkavyi, J. Navratil, P. Novak. Appl. Magn. Res., 52 (2021) 1729—1737, doi: 10.1007/s00723-021-01409-z

21. J. Skibsted, T. Vosegaard, H. Bildsøe, H. J. Jakobsen. J. Phys. Chem., 100 (1996) 14872—14881, doi: 10.1021/jp9608741

22. T. Minami, Y. Tokuda, H. Masai, Y. Ueda, Y. Ono, S. Fujimura, T. Yoko. J. Asian Ceram. Soc., 2 (2014) 333—338, doi: 10.1016/j.jascer.2014.07.001

23. S. Kroeker, K. Eichele, R. E. Wasylishen, J. F. Britten. J. Phys. Chem. B, 101 (1997) 3727—3733, doi: 10.1021/jp970043a

24. O. B. Lapina, V. M. Mastikhin, A. A. Shubin, K. M. Eriksen, R. Fehrmann. J. Mol. Catal. A, 99, N 2 (1995) 123—130, doi: 10.1016/1381-1169(95)00043-7

25. O. B. Lapina, V. V. Terskikh, A. A. Shubin, V. M. Mastikhin, K. M. Eriksen, R. Fehrmann. J. Phys. Chem., 101, N 45 (1997) 9188—9194, doi: 10.1021/jp971789b

26. L. Piveteau, V. Morad, M. V. Kovalenko. J. Am. Chem. Soc., 142 (2020) 19413—19437, doi: 10.1021/jacs.0c07338

27. A. Karmakar, A. Bhattacharya, D. Sarkar, G. M. Bernard, A. Mar, V. Michaelis. Chem. Sci., 12 (2021) 3253—3263, doi: 10.1039/d0sc05614f

28. F. Ji, F. Wang, L. Kobera, S. Abbrent, J. Brus, W. Ning, F. Gao. Chem. Sci., 12 (2021) 1730—1735, doi: 10.1039/d0sc05264g

29. A. Karmakar, A. Bhattacharya, G. M. Bernard, A. Mar, V. K. Michaelis. ACS Mater. Lett., 3 (2021) 261—267, doi: 10.1021/acsmaterialslett.0c00596

30. Y. Chen, S. R. Smock, A. H. Flintgruber, F. A. Perras, R. L. Brutchey, A. J. Rossini. J. Am. Chem. Soc., 2 (2020) 1—13, doi: 10.1021/jacs.9b13396

31. I. M. Sharaf, A. V. Shurukhina, I. S. Komarova, A. V. Emeline. Mendeleev Commun., 31 (2021) 465—468, doi: 10.1016/j.mencom.2021.07.009

32. V. I. Chizik, Yu. S. Chernyshev, A. V. Donets, V. V. Frolov, A. I. Komolkin, M. G. Shelyapina. Magnetic Resonance and its Applications, XX, Springer, Cham, Heidelberg, New York, Dordrecht, London (2014), doi: 10.1007/978-3-319-05299-1

33. Bruker TopSpin, https://www.bruker.com/service/information-communication/user-manuals/nmr.htm

34. F. A. Perras, C. M. Widdifield, D. L. Bryce. Solid State Nucl. Magn. Res., 45-46 (2012) 36—44, doi: 10.1016/j.ssnmr.2012.05.002


Review

For citations:


Gavrilenko A.N., Gnezdilov O.I., Emeline A.V., Shurukhina A.V., Schmidt E.V., Ivanov A.F., Matukhin V.L. Solid-State Nuclear Magnetic Resonance 133Cs in CsPbBr3+Bi Semiconductor Perovskites. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):577-583. (In Russ.)

Views: 272


ISSN 0514-7506 (Print)