Structural and Photoelectric Properties of CsPbI3 Perovskite Solar Elements Made with Hydriodic Acid Adding
Abstract
Caesium-lead-triiodide (CsPbI3) – based inorganic perovskites are the most perspective material for production of perovskite solar cells (PSC) due to the optimal width of energy gap in them, about 1.72 eV and high light absorption coefficient. The latter is the characteristic of the cubic structure of CsPbI3, called the black phase. To form such a structure at relatively low temperatures, it is required to add hydroiodic acid (HI) to the perovskite solution from which the structure is prepared. Structural, morphological, optical and photoelectrical parameters of CsPbI3 solar cells at various concentrations (added quantity) of HI acid have been studied. The most important characteristics of CsPbI3 – based PSC with maximum efficiency of 8.85% obtained at HI acid concentration of 66 µl/ml are described.
About the Authors
E. A. ZakhidovUzbekistan
Sh. K. Nematov
Uzbekistan
A. A. Saparbaev
Uzbekistan
L. R. Nurumbetova
Uzbekistan
B. G. Khidirov
Uzbekistan
A. Yu. Turgunboev
Uzbekistan
References
1. Wang, K. Li, R. Wang, Z.-K. Wang, M. Li, Y. Zhang, H. Ma, L.-S. Liao, Y. Yang. Nano Lett., 19, N 8 (2019) 5176—5184
2. E. Zakhidov, M. Imomov, V. Quvondikov, S. Nematov, I. Tajibaev, A. Saparbaev, I. Ismail, B. Shahid, R. Yang. Appl. Phys. A, 125 (2019) 1—7
3. E. Zakhidov, S. Nematov, A. Saparbaev, T. Ilkhomjon, L. Nurumbetova, B. Khidirov, I. Boynazarov, A. Turgunboev, F. Ruziyev. Uzbek Phys. J., 25, N 1 (2023)
4. T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao. Sci. Adv., 3, N 9 (2017) e1700841
5. Z. Yao, W. Zhao, S. F. Liu. J. Mater. Chem. A, 9, N 18 (2021) 11124—11144
6. C. Gao, H. Dong, X. Bao, Y. Zhang, A. Saparbaev, L. Yu, S. Wen, R. Yang, L. Dong. J. Mater. Chem. C, 6, N 30 (2018) 8234—8241
7. L.-K. Gao, Y.-L. Tang. ACS Omega, 6, N 17 (2021) 11545—11555
8. A. Saparbaev, C. Gao, D. Zhu, Z. Liu, X. Qu, X. Bao, R. Yang. J. Power Sources, 426 (2019) 61—66
9. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. J. Am. Chem. Soc., 131, N 17 (2009) 6050—6051
10. H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, M. J. Kim, Y. K. Kim, K. S. Kim, T. J. Shin. Nature, 598, N 7881 (2021) 444—450
11. K. Wang, Z. Li, F. Zhou, H. Wang, H. Bian, H. Zhang, Q. Wang, Z. Jin, L. Ding, S. Liu. Adv. Energy Mater., 9, N 42 (2019) 1902529
12. C. F. J. Lau, Z. Wang, N. Sakai, J. Zheng, C. H. Liao, M. Green, S. Huang, H. J. Snaith, A. H. Baillie. Adv. Energy Mater., 9, N 36 (2019) 1901685
13. S. Xiang, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, S. Yang, H. Chen. Science, 15 (2019) 156—164
14. Y. Chen, X. Liu, T. Wang, Y. Zhao. Acc. Chem. Res., 54, N 17 (2021) 3452—3461
15. Y. Wu, H. Wei, L. Xu, B. Cao, H. Zeng. J. Appl. Phys., 128, N 5 (2020): 050903.
16. G. Yuan, S. Qin, X. Wu, H. Ding, A. Lu. Phase Trans., 91, N 1 (2018) 38—47
17. L. Wang, B. Fan, B. Zheng, Z. Yang, P. Yin, L. Huo. Sustainable Energy Fuels, 4, N 5 (2020) 2134—2148
18. Y. Guo, H. Liu, W. Li, L. Zhu, H. Chen. Solar RRL, 4, N 12 (2020) 2000380
19. A. Saparbaev, M. Zhang, V. Kuvondikov, L. Nurumbetova, I. O. Raji, I. Tajibaev, E. Zakhidov, X. Bao, R. Yang. Solar Energy, 228 (2021) 405—412
20. Q. Ye, F. Ma, Y. Zhao, S. Yu, Z. Chu, P. Gao, X. Zhang, J. You. Small, 16, N 50 (2020) 2005246
21. B. Wang, Y.‐H. Zhou, S. Yuan, Y.‐H. Lou, K.‐L. Wang, Y. Xia, C.‐H. Chen, Y. R. Shi, Z. K. Wang, L. S. Liao. Angew. Chem. Int. Ed., 62, N 21 (2023) e202219255
22. C. Weerd, L. Gomez, A. Capretti, D. M. Lebrun, E. Matsubara, J. Lin, M. Ashida, F. C. Spoor, L. D. Siebbeles, A. J. Houtepen, K. Suenaga. Nature Comm., 9, N 1 (2018) 4199
23. H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker, G.-H. Kim, J. Y. Kim. Nano Energy, 7 (2014) 80—85
24. Q. Zhao, A. Hazarika, L. T. Schelhas, J. Liu, E. A. Gaulding, G. Li, M. Zhang, M. F. Toney, P. C. Sercel, J. M. Luther. ACS Energy Lett., 5, N 1 (2019) 238—247
25. G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, H. J. Snaith. J. Mater. Chem. A, 3, N 39 (2015) 19688—19695
26. P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, Y. Lu. J. Phys. Chem. Lett., 7, N 18 (2016) 3603—3608
27. J. Zhang, B. Che, W. Zhao, Y. Fang, R. Han, Y. Yang, J. Liu, T. Yang, T. Chen, N. Yuan, J. Ding. Adv. Mater., 34, N 41 (2022) 2202735
28. Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen, J. Huang. Joule, 1, N 2 (2017) 371—382
29. W. Chu, W. A. Saidi, J. Zhao, O. V. Prezhdo. Angew. Chem. Int. Ed., 59, N 16 (2020) 6435—6441
30. Y. Guo, H. Liu, W. Li, L. Zhu, H. Chen. Solar RRL, 4, N 12 (2020) 2000380
31. F. Muniz, T. Leitao, M. A. R. Miranda, Cássio Morilla dos Santos, J. M. Sasaki. Acta Crystallograph. A: Found. Adv., 72, N 3 (2016) 385—390
Review
For citations:
Zakhidov E.A., Nematov Sh.K., Saparbaev A.A., Nurumbetova L.R., Khidirov B.G., Turgunboev A.Yu. Structural and Photoelectric Properties of CsPbI3 Perovskite Solar Elements Made with Hydriodic Acid Adding. Zhurnal Prikladnoii Spektroskopii. 2023;90(4):640-647. (In Russ.)