

Direct and Sensitive Lead Analysis of Wheat Flour Using Laser-Induced Fluorescence Combined with Laser-Induced Breakdown Spectroscopy Under Low-Energy Ultraviolet Laser Ablation
Abstract
Lead in any food is harmful even at low concentrations. In this study, a direct and highly sensitive lead analysis technique was developed for wheat flour using laser-induced fluorescence combined with laserinduced breakdown spectroscopy. Wheat flour was pressed into small pellets and ablated by a low-energy ultraviolet 266-nm laser. A tunable dye laser constructed in our laboratory was used to resonantly excite the lead. The optimized interpulse time delay was 400 ns. A calibration curve was constructed and the detection limit for lead was 73.8 ppb. This method could be used to directly and sensitively analyze wheat flour for trace concentrations of lead.
About the Authors
Y. WangChina
Pingdingshan
Guangzhou
Y. Chen
China
Guangzhou
R. Li
China
Guangzhou
References
1. F. M. Johnson, Mutation Res., 410, 123–140 (1998).
2. T. I. Lidsky, J. S. Schneider, Brain, 126, 5–19 (2003).
3. J. E. Gall, R. S. Boyd, N. Rajakaruna, Environ. Monit. Assess, 187, 201 (2015).
4. P. K. Rai, S. S. Lee, M. Zhang, Y. F. Tsang, K. H. Kim, Environ. Int., 125, 365–385 (2019).
5. W. M. Yang, G. C. Xu, L. Y. Ji, Y. E. Shang, J. Food Sci. Technol., 37, No. 1, 16–19 (2019).
6. T. Borahana, T. Unutkanb, N. B. Turanc, F. Turaka, S. Bakırdere, Food Chem., 299, 125065 (2019).
7. B. T. Zaman, A. F. Erulaş, D. S. Chormey, S. Bakirdere, Food Chem., 303, 125396 (202).
8. S. M. Elgammal, M. A. Khorshed, E. H. Ismail, J. Food Compos. Anal., 84, 103300 (2019).
9. E. J. Sneddon, C. J. Hardaway, J. Sneddon, K. Boggavarapu, A. S. Tate, S. L. Tidwell, D. P. Gary, C. Douvris, Microchem. J., 134, 9–12 (2017).
10. U. S. Erdemir, Y. Sahan, S. Gucer, Anal. Lett., 52, No. 17, 2840–2851 (2019).
11. A. Londonio, E. Morzán, P. Smichowski, Food Chem., 284, 149–154 (2019).
12. E. P. Nardi, F. S. Evangelista, L. Tormen, T. D. Saint´Pierre, A. J. Curtius, S. S. de Souza, F. Barbosa, Food Chem., 112, 727–732 (2009).
13. B. Beldjilali, D. Borivent, L. Mercadier, E. Mothe, G. Clair, J. Hermann, Spectrochim. Acta B, 65, 727–733 (2018).
14. X. Chen, X. H. Li, S. B. Yang, X. Yu, A. H. Liu, Opt. Express, 9, No. 3, 1057–1068 (2018).
15. M. Galiova, J. Kaiser, K. Novotny, O. Samek, L. Reale, R. Malina, K. Palenikova, M. Liska, V. Cudek, V. Kanicky, V. Otruba, A. Poma, A. Tucci, Spectrochim. Acta B, 62, 1597–1605 (2007).
16. D. Santos, L. C. Nunes, G. G. A. de Carvalho, M. D. Gomes, P. F. de Souza, F. D. Leme, L. G. C. dos Santos, F. G. Krug, Spectrochim. Acta B, 71-72, 3–13 (2012). 312-8
17. G. Kim, J. Kwak, J. Choi, K. Park, J. Agric. Food. Chem., 60, 718–724 (2012).
18. X. D. Zhao, C. J. Zhao, X. F. Du, D. M. Dong, Sci. Rep., 9, 906 (2019).
19. F. Liu, L. H. Ye, J. Y. Peng, K. L. Song, T. T. Shen, C. Zhang, Y. He, Sensors, 18, 705 (2018).
20. H. Q. Hu, X. H. Xu, L. Huang, M. Y. Yao, T. B. Chen, M. H. Liu, C. H. Wang, Spectrosc. Spectr. Anal., 36, N 4, 1180–1185 (2016).
21. T. J. Jiang, Z. Guo, M. J. Ma, L. Fang, M. Yang, S. S. Li, J. H. Liu, N. J. Zhao, X. J. Huang, W. Q. Liu, Electrochim. Acta, 216, 188–195 (2016).
22. P. Yang, R. Zhou, W. Zhang, R. X. Yi, S. S. Tang, L. B. Guo, Z. Q. Hao, X. Y. Li, Y. F. Lu, X. Y. Zeng, Food Chem., 272, 323–328 (2019).
23. J. Y. Peng, Y. He, J. D. Jiang, Z. F. Zhao, F. Zhou, F. Liu, Food Chem., 295, 327–333 (2019).
24. H. H. Cho, Y. J. Kim, Y. S. Jo, K. Kitagawa, N. Araib, Y. Lee, J. Anal. At. Spectrom., 16, 622–627 (2001).
25. L. C. Peruchi, L. C. Nunes, G. G. A. de Carvalho, M. B. B. Guerra, E. Almeida, I. A. Rufini D. Santos, F. J. Krug, Spectrochim. Acta B, 100, 129–136 (2014).
26. S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, R. Fedosejevs, Anal. Chem., 80, No. 6, 1995–2000 (2008).
27. H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, Sabsabi, J. Anal. At. Spectrom., 24, No. 10, 1421–1428 (2009).
28. J. Kang, R. H. Li, Y. R. Wang, Y. Q. Chen, Y. X. Yang, J. Anal. At. Spectrom., 32, No. 11, 2292–2299 (2017).
29. P. Y. Gao, P. Yang, R. Zhou, S. X. Ma, W. Zhang, Z. Q. Hao, S. S. Tang, X. Y. Li, X. Y. Zeng, Appl. Opt., 57, No. 30, 8942–8946 (2018).
30. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, Spectrochim. Acta B, 56, No. 6, 933–945 (2001).
31. R. X. Yi, J. M. Li, X. Y. Yang, R. Zhou, H. W. Yu, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, Y. F. Lu, Anal. Chem., 89, No. 4, 2334–2337 (2017).
32. C. M. Li, Z. Q. Hao, Z. M. Zou, R. Zhou, J. M. Li, L. B. Guo, X. Y. Li, Y. F. Lu, X. Y. Zeng, Opt. Express, 24, No. 8, 7850–7857 (2016).
33. J. M. Li, L. B. Guo, N. Zhao, X. Y. Yang, R. X. Yi, K. H. Li, Q. D. Zeng, X. Y. Li, X. Y. Zeng, Y. F. Lu, Talanta, 151, 234–238 (2016).
34. X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, Y. F. Lu, Appl. Opt., 48, No. 13, 2551–2558 (2009).
35. J. Kang, Y. R. Wang, R. H. Li, Y. Q. Chen, Opt. Express, 26, No. 11, 14689–14699 (2018).
Review
For citations:
Wang Y., Chen Y., Li R. Direct and Sensitive Lead Analysis of Wheat Flour Using Laser-Induced Fluorescence Combined with Laser-Induced Breakdown Spectroscopy Under Low-Energy Ultraviolet Laser Ablation. Zhurnal Prikladnoii Spektroskopii. 2024;91(2):312. (In Russ.)