Influence of oxidative annealing temperature on the structural and optical characteristics of tin oxide films
Abstract
The results of studies of the crystalline structure and optical characteristics of disordered tin oxide films are presented. Tin oxide films were synthesized by means of magnetron sputtering of a tin target on glass substrate followed by 2-stage annealing in air. The microstructure of tin oxide films was analyzed by X-ray diffraction method and Raman spectroscopy. Transmission spectra of the samples were measured in the wave length range λ = 200–3000 nm. The optical constants of thin tin oxide films depending on the wavelength (refractive index n, absorption coefficient α) were determined using the envelope method. The possibility of synthesis of the tin oxide films with controllably varied optical parameters (absorption coefficient α up to 82 % in the visible range of electromagnetic spectra, refractive index n in the range of 2–2.6, Tauc optical gap in the range of 2.62–3.46 eV) by changing the temperature at the 2nd stage of oxidative annealing in the range of 325–475°C was demonstrated.
About the Authors
V. K. KsenevichBelarus
Minsk
Dalian
V. A. Dorosinets
Belarus
Minsk
M. A. Samarina
Belarus
Minsk
D. V. Adamchuk
Belarus
Minsk
G. Abdurakhmanov
Uzbekistan
Tashkent
H. Liu
China
Dalian
References
1. [1] M. Z. Iqbal, F. Wang, R. Hussain, M. Y. Rafique, S. Ali, I. Ali. Mater. Focus, 3 (2014) 1—6
2. [2] Y. Li, T. Cui, L. Zhang, Y. M. Ma, G. T. Zou. J. Phys.: Cond. Matter, 19, N 42 (2007) 425230(1—10)
3. [3] M. Ristić, M. Ivanda, S. Popović, S. Musić. J. Non Crystall. Solids, 303, N 2 (2002) 270—280
4. [4] C. Li, M. Zheng, X. H. Wang, L. Yao, L. Ma, W. Shen. Nanoscale Res. Lett., 6, N 1 (2011) 615(1—7)
5. [5] V. Ksenevich, V. Dorosinets, D. Adamchuk, J. Macutkevic, J. Banys. Materials, 13, N 23 (2020) 5415(1—14)
6. [6] M. Batzill, U. Diebold. Progress Surface Sci., 79 (2005) 47—154
7. [7] O. L. Bersirova, L. I. Bruk, A. I. Dikusar, M. I. Karaman, S. P. Sidel’nikova, A. V. Simashkevich, D. A. Sherban, Yu. S. Yapontseva. Surface Eng. Appl. Electrochem., 43, N 6 (2007) 443—452]
8. [8] В. Ф. Громов, Г. Н. Герасимов, Т. В. Белышева, Л. И. Трахтенберг. Рос. хим. журн., LII, № 5 (2008) 80—87 [V. F. Gromov, G. N. Gerasimov, T. V. Belysheva, L. I. Trakhtenberg. Russ. Chem. J., LII, N 5 (2008) 80—87 (in Russ.)]
9. [9] К. П. Богданов, Д. Ц. Димитров, О. Ф. Луцкая, Ю. М. Таиров. ФТП, 32, № 10 (1998) 1158—1160 [K. P. Bogdanov, D. Ts. Dimitrov, O. F. Lutskaya, Yu. M. Tairov. Semiconductors, 32, N 10 (1998) 1033—1035]
10. [10] B. Yuliarto, G. Gumilar, N. L. W. Septiani. Adv. Mater. Sci. Eng., N 12 (2015) 694823(1—14)
11. [11] T. Oshima, T. Okuno, S. Fujita. Jpn. J. Appl. Phys, 48 (2009) 120207(1—3)
12. [12] M. Alaf, D. Gultekin, H. Akbulut. Acta Phys. Polonica A, 123, N 2 (2013) 323—325
13. [13] Y. C. Lu, C. Ma, J. Alvarado, T. Kidera, N. Dimov, Y. S. Meng, S. Okada. J. Power Sources, 284 (2015) 287—295
14. [14] V. K. Ksenevich, D. V. Adamchuk, V. B. Odzhaev, P. Zhukowski. Acta Phys. Polonica A, 128, N 5 (2015) 861—863
15. [15] D. V. Adamchuck, V. K. Ksenevich. Devices and Methods of Measurements, 10, N 2 (2019) 138—150 (in Russ.)]
16. [16] D. V. Adamchuk, V. K. Ksenevich, N. A. Poklonski, M. Navickas, J. Banys. Lithuanian J. Phys., 59, N 4 (2019) 179—187
17. [17] D. V. Adamchuck, V. K. Ksenevich, N. A. Poklonski, A. I. Kavaleu. Proc. National Academy of Sciences of Belarus. Physics and Mathematics, 56, N 1 (2020) 102—113 (in Russ.)]
18. [18] E. M. F. Vieira, J. P. B. Silva, K. Veltruská, V. Matolín, A. L. Pires, A. M. Pereira, M. J. M. Gomes, L. M. Goncalves. Nanotechnology, 30, N 43 (2019) 435502(1—22)
19. [19] A. Shanmugasundaram, P. Basak, L. Satyanarayana, S. V. Manorama. Sensors and Actuators B, 185 (2013) 265—273
20. [20] L. Li, C. Zhang, W. Chen. Nanoscale, 7, N 28 (2015) 12133—12142
21. [21] W. Zeng, Y. Liu, G. Chen, H. Zhan, J. Mei, N. Luo, Z. He, C. Tang. RSC Adv., 10, N 50 (2020) 29843—29854
22. [22] M. Saravanakumar, S. Agilan, N. Muthukumarasamy, V. Rukkumani. Int. J. Chem. Sci., 13, N 2 (2015) 605—612
23. [23] P. Boroojerdian. Int. J. Nanosci. Nanotechnol., 9, N 2 (2013) 95—100
24. [24] L. Sangaletti, L. E. Depero, B. Allieri, F. Pioselli, E. Comini, G. Sberveglieri, M. Zocchi. J. Mater. Res., 13, N 9 (1998) 2457—2460
25. [25] M. Khosravi-Nouri, N. Shahtahmassebi, E. Attaran-Kakhki, G. Zohuri. Mater. Phys. Mech., 17 (2013) 29—32
26. [26] Y. Q. Guo, R. Q. Tan, X. Li, J. H. Zhao, Z. L. Luo, C. Gao, W. J. Song. Cryst. Eng. Comm., 13 (2011) 5677—5680
27. [27] B. Eifert, M. Becker, C. T. Reindl, M. Giar, L. Zheng, A. Polity, Y. He, C. Heiliger, P. J. Klar. Phys. Rev. Mater., 1, N 1 (2017) 014602(1—6)
28. [28] C. Guillén, J. Herrero. J. Mater. Sci. Tech., 35, N 8 (2019) 1706—1711
29. [29] D. Tuschel. Spectroscopy, 33, N 12 (2018) 12—19
30. [30] V. I. Kondrashin. Technical Science. Electronics, Measuring and Radio Engineering, 2, N 38 (2016) 93—101 (in Russ.)]
31. [31] V. V. Brus, Z. D. Kovalyuk, P. D. Maryanchuk. Tech. Phys., 57 (2012) 1148—1151]
32. [32] V. V. Brus, M. N. Solovan, E. V. Maistruk, I. P. Kozyarskii, P. D. Maryanchuk, K. S. Ulyanytsky, J. Rappich. Phys. Solid State, 56 (2014) 1947—1951]
33. [33] D. L. Wood, J. Tauc. Phys. Rev. B, 5 (1972) 3144—3151
34. [34] J. Klein, L. Kampermann, B. Mockenhaupt, M. Behrens, J. Strunk, G. Bacher. Adv. Func. Mater., 33 (2023) 2304523(1—19)
Review
For citations:
Ksenevich V.K., Dorosinets V.A., Samarina M.A., Adamchuk D.V., Abdurakhmanov G., Liu H. Influence of oxidative annealing temperature on the structural and optical characteristics of tin oxide films. Zhurnal Prikladnoii Spektroskopii. 2024;91(6):813-820. (In Russ.)