Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

MECHANISMS OF UPCONVERSION LUMINESCENCE IN GLASS-CERAMICS CONTAINING Er:PbF2 NANOCRYSTALS

Abstract

Transparent oxyfluoride germanosilicate glass-ceramics containing Er:PbF2 nanocrystals is synthesized on the basis of SiO2-GeO2-PbO-PbF2 initial glass doped with Er2O3. The glass-ceramics is characterized by yellow-green luminescence, the intensity of which is ~12-times higher than that for the initial glass. The redistribution of the intensity between green and red emission bands after the glass heat-treatment is explained using data of the lifetime measurements for six excited states of Er3+ ions from4I11/ 2 to2H11/ 2 . A substantial increase of the lifetime of the4F9/ 2 state (from 0.6 to 71 μs) is detected for the glass-ceramics as compared to the initial glass. UV up-conversion luminescence is observed for the glass-ceramics. The mechanisms of the up-conversion for 11 emission lines in the UV, blue, red, and deep-red spectral regions are discussed.

About the Authors

P. A. Loiko
Center for Optical Materials and Technologies, Belarusian National Technical University
Russian Federation


G. E. Rachkovskaya
Belarusian State Technological University
Russian Federation


N. A. Skoptsov
Center for Optical Materials and Technologies, Belarusian National Technical University
Russian Federation


G. M. Arzumanyan
Joint Institute for Nuclear Research
Russian Federation


M. . Kulik
Joint Institute for Nuclear Research
Russian Federation


A. I. Kuklin
Joint Institute for Nuclear Research; Moscow Institute of Physics and Technology
Russian Federation


G. B. Zakharevich
Belarusian State Technological University
Russian Federation


K. V. Yumashev
Center for Optical Materials and Technologies, Belarusian National Technical University
Russian Federation


X. . Mateos
Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA), Universitat Rovira i Virgili (URV), Campus Sescelades
Russian Federation


References

1. F. Auzel, D. Pecile, D. Morin, J. Electrochem. Soc., 122, 101-107 (1975).

2. K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, S. R. Lüthi, Chem. Mater., 16, 1244-1251 (2004).

3. G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, L.-H. Guo, Nano Lett., 4, 2191-2196 (2004).

4. A. Shalav, B. S. Richards, T. Trupke, K.W. Krämer, H.U. Güdel, Appl. Phys. Lett., 86, 013505 (2005).

5. R. Brede, E. Heumann, J. Koetke, T. Danger, G. Huber, B. Chai, Appl. Phys. Lett., 63, 2030-2031 (1993).

6. M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, Phys. Rev. B, 27, 6635-6648 (1983).

7. M. J. Dejneka, J. Non-Cryst. Solids, 239, 149-155 (1998).

8. G. H. Beall, L. R. Pinckney, J. Am. Ceram. Soc., 82, 5-16 (1999).

9. V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, R. Rolli., Appl. Phys. Lett., 81, 1937-1939 (2002).

10. X. Qiao, X. Fan, J. Wang, M. Wang, J. Non-Cryst. Solids, 351, 357-363 (2005).

11. X. Qiao, J. Wang, M. Wang, J. Appl. Phys., 99, 074302 (2006).

12. D. Chen, Y. Wang, Y. Yu, E. Ma, L. Zhou, J. Solid-State Chem., 179, 532-537 (2006).

13. D. Chen, Y. Wang, K. Zheng, T. Guo, Y. Yu, P. Huang, Appl. Phys. Lett., 91, 251903 (2007).

14. S. Tanabe, H. Hayashi, T. Hanada, N. Onodera, Opt. Mater., 19, 343-349 (2002).

15. F. Liu, E. Ma, D. Chen, Y. Yu, Y. Wang, J. Phys. Chem. B, 110, 20843-20846 (2006).

16. F. Xin, S. Zhao, L. Huang, D. Deng, G. Jia, H. Wang, S. Xu, Mater. Lett., 78, 75-77 (2012).

17. Y. Kawamoto, R. Kanno, J. Qiu, J. Mater. Sci., 33, 63-67 (1998).

18. P. A. Loiko, G. E. Rachkovskaya, G. B. Zakharevich, K. V. Yumashev, Glass Ceram., 71, 41-44 (2014).

19. P. A. Loiko, G. E. Rachkovskaya, G. B. Zakharevich, A. A. Kornienko, E. B. Dunina, A. S. Yasukevich, K. V. Yumashev, J. Non-Cryst. Solids, 392-393, 39-44 (2014).

20. M. Takahashi, M. Izuki, R. Kanno, Y. Kawamoto, J. Appl. Phys., 83, 3920-3922 (1998).

21. P. A. Loiko, G. E. Rachkovskaya, G. B. Zakharevich, K. V. Yumashev, Opt. Spectrosc., 118 235-239 (2015).

22. M. Mortier, F. Auzel, J. Non-Cryst. Solids, 256-257, 361-365 (1999).

23. L. A. Bueno, P. Melnikov, Y. Messaddeq, S. J. L Ribeiro, J. Non-Cryst. Solids, 247, 87-91 (1999).

24. G. E. Rachkovskaya, P. A. Loiko, N. A. Skoptsov, G. B. Zakharevich, K. V. Yumashev, Glass Ceram., 71, 266-269 (2014).

25. G. Dantelle, M. Mortier, G. Patriarche, D. Vivien, J. Solid-State Chem., 179, 1995-2003 (2006).

26. M. Mortier, P. Goldner, C. Chateau, M. Genotelle, J. Alloys Compd., 323-324, 245-249 (2001).

27. M. Mortier, G. Patriarche, J. Mater. Sci., 35, 4849-4856 (2000).

28. A. I. Kuklin, A. K. Islamov, V. I. Gordeliy, Neutron News, 16, 16-18 (2005).

29. Data Analysis Software ATSAS 2.3, http://www.embl-hamburg.de/biosaxs/software.html.

30. M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, Phys. Rev. B, 61, 3337-3346 (2000).


Review

For citations:


Loiko P.A., Rachkovskaya G.E., Skoptsov N.A., Arzumanyan G.M., Kulik M., Kuklin A.I., Zakharevich G.B., Yumashev K.V., Mateos X. MECHANISMS OF UPCONVERSION LUMINESCENCE IN GLASS-CERAMICS CONTAINING Er:PbF2 NANOCRYSTALS. Zhurnal Prikladnoii Spektroskopii. 2017;84(1):172(1)-172(8). (In Russ.)

Views: 468


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)