Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

ANALYSIS OF PLASMONIC GOLD NANOSTAR ARRAYS WITH THE OPTIMUM SERS ENHANCEMENT FACTOR ON THE HUMAN SKIN TISSUE

Abstract

We analyze the performance of the surface-enhanced Raman spectroscopy (SERS) substrate based on high-density gold nanostar nanoparticle (GNS) arrays assembled on the gold film and embedded in the human skin tissue as a surrounding medium. A self-assembled monolayer (SAM) of 3-aminopropyltriethoxysilane (APTES) is used for immobilizing GNSs on the Au film. The GNS-Au film and GNS-GNS coupling in the gap regions and also the GNSs interparticle coupling at their branches are observed, so the GNS arrays show more field enhancements and the sensitivity of the GNS sensor can be increased further. When the SERS substrate based on the GNS arrays is excited by a 785 nm laser line, a maximum enhancement factor (EF) of 109 is observed. It is demonstrated that the normalized EF depends on the geometry of the GNSs, the thickness of the Au film, and the separation distance between the cores of the GNSs.

About the Authors

S. Golmohammadi
School of Engineering-Emerging Technologies, University of Tabriz
Islamic Republic of Iran
Tabriz


M. Etemadi
School of Engineering-Emerging Technologies, University of Tabriz
Islamic Republic of Iran
Tabriz


References

1. L. Osinkina, T. Lohmuller, F. Jackel, J. Feldmann, J. Phys. Chem. C, 117, 22198–22202 (2013).

2. T. Vo-Dinh, A. M. Fales, G. D. Griffin, C. G. Khoury, Y. Liu, H. Ngo, S. J. Norton, J. K. Register, H.-N. Wang, H. Yuan, Nanoscale, 5, 10127–10140 (2013).

3. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, ACS Publications (2003).

4. E. Boisselier, D. Astruc, Chem. Soc. Rev., 38, 1759–1782 (2009).

5. M. V. Park, A. M. Neigh, J. P. Vermeulen, L. J. de la Fonteyne, H. W. Verharen, J. J. Briedé, H. van Loveren, W. H. de Jong, Biomaterials, 32, 9810–9817 (2011).

6. G. Bisker, D. Yelin, J. Opt. Soc. Am. B, 29, 1383–1393 (2012).

7. M. Yang, X. Yang, L. Huai, Appl. Phys. A: Mater. Sci. Process., 92, 367–370 (2008).

8. T. Pylaev, V. Khanadeev, B. Khlebtsov, L. Dykman, V. Bogatyrev, N. Khlebtsov, Nanotechnology, 22, 285501 (2011).

9. B. Khlebtsov, V. Khanadeev, I. Maksimova, G. Terentyuk, N. Khlebtsov, Nanotechnol. Russ., 5, 454–468 (2010).

10. M. Liu, P. Guyot-Sionnest, J. Phys. Chem. B, 109, 22192–22200 (2005).

11. G. P. Kumar, J. Opt. Soc. Am. B, 29, 594–599 (2012).

12. C. L. Nehl, H. Liao, J. H. Hafner, Nano Lett., 6, 683–688 (2006).

13. H. Yockell-Lelièvre, F. Lussier, J.-F. Masson, J. Phys. Chem. C, 119, 28577–28585 (2015).

14. N. Li, P. Zhao, D. Astruc, Angew. Chem. Int. Ed., 53, 1756–1789 (2014).

15. A. H. Gandjbakhche, Compt. Rend. Acad. Sci., Ser. IV Phys., 2, 1073–1089 (2001).

16. Y. Liu, H. Yuan, F. R. Kersey, J. K. Register, M. C. Parrott, T. Vo-Dinh, Sensors, 15, 3706–3720 (2015).

17. H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, T. Vo-Dinh, Nanotechnology, 23, 075102 (2012).

18. P. Yang, J. Zheng, Y. Xu, Q. Zhang, L. Jiang, Adv. Mater., 28, 10508–10517 (2016).

19. T. K. Lee, S. K. Kwak, J. Phys. Chem. C, 118, 5881–5888 (2014).

20. J. Lee, B. Hua, S. Park, M. Ha, Y. Lee, Z. Fan, H. Ko, Nanoscale, 6, 616–623 (2014).

21. H. Yuan, J. K. Register, H.-N. Wang, A. M. Fales, Y. Liu, T. Vo-Dinh, Anal. Bioanal. Chem., 405, 6165–6180 (2013).

22. P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne, Annu. Rev. Anal. Chem., 1, 601–626 (2008).

23. M. Kerker, D.-S. Wang, H. Chew, Appl. Opt., 19, 3373–3388 (1980).

24. J. Z. Zhang, J. Phys. Chem. Lett., 1, 686–695 (2010).

25. C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, J. Feldmann, Appl. Phys. Lett., 94, 153113 (2009).

26. J. Hu, P.-C. Zheng, J.-H. Jiang, G.-L. Shen, R.-Q. Yu, G.-K. Liu, Analyst, 135, 1084–1089 (2010).

27. Z. Zhang, Y. Wen, Y. Ma, J. Luo, X. Zhang, L. Jiang, Y. Song, Appl. Phys. Lett., 98, 133704 (2011).

28. P. Taladriz-Blanco, N. J. Buurma, L. Rodríguez-Lorenzo, J. Pérez-Juste, L. M. Liz-Marzán, P. Hervés, J. Mater. Chem., 21, 16880–16887 (2011).

29. A. Saha, S. Palmal, N. R. Jana, Nanoscale, 4, 6649–6657 (2012).

30. L. Fabris, M. Dante, T. Q. Nguyen, J. B. H. Tok, G. C. Bazan, Adv. Funct. Mater., 18, 2518–2525 (2008).

31. S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, R. P. Van Duyne, J. Am. Chem. Soc., 135, 301–308 (2012).

32. J. M. Romo-Herrera, R. A. Alvarez-Puebla, L. M. Liz-Marzán, Nanoscale, 3, 1304–1315 (2011).

33. J.-H. Lee, J.-M. Nam, K.-S. Jeon, D.-K. Lim, H. Kim, S. Kwon, H. Lee, Y. D. Suh, ACS Nano, 6, 9574–9584 (2012).

34. A. D. S. Indrasekara, S. Meyers, S. Shubeita, L. Feldman, T. Gustafsson, L. Fabris, Nanoscale, 6, 8891–8899 (2014).

35. H. R. Stuart, D. G. Hall, Phys. Rev. Lett., 80, 5663 (1998).

36. P. Nordlander, C. Oubre, E. Prodan, K. Li, M. Stockman, Nano Lett., 4, 899–903 (2004).

37. A. Kravets, T. Borodinova, V. Kravets, J. Opt. Soc. Am. B, 33, 302–307 (2016).

38. S. Piltan, D. Sievenpiper, J. Opt. Soc. Am. B, 35, 208–213 (2018).

39. P. B. Johnson, R.-W. Christy, Phys. Rev. B, 6, 4370 (1972).

40. A. Shiohara, S. M. Novikov, D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, J. Phys. Chem. C, 119, 10836–10843 (2014).

41. F. Tian, J. Conde, C. Bao, Y. Chen, J. Curtin, D. Cui, Biomaterials, 106, 87–97 (2016).

42. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, X.-H. Hu, Phys. Med. Biol., 51, 1479 (2006).

43. T. Lister, P. A. Wright, P. H. Chappell, J. Biomed. Opt., 17, 0909011–09090115 (2012).

44. J. Le Grange, J. Markham, C. Kurkjian, Langmuir, 9, 1749–1753 (1993).

45. J. A. Howarter, J. P. Youngblood, Langmuir, 22, 11142–11147 (2006).

46. S. Atta, T. V. Tsoulos, L. Fabris, J. Phys. Chem. C, 120, 20749–20758 (2016).

47. Q.-Q. Meng, X. Zhao, C.-Y. Lin, S.-J. Chen, Y.-C. Ding, Z.-Y. Chen, Sensors, 17, 1846 (2017).

48. A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, S. A. Maier, Adv. Opt. Mater., 3, 71–77 (2015).

49. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, N. J. Halas, Nano Lett., 9, 2188–2192 (2009).

50. S.-Y. Chen, J. J. Mock, R. T. Hill, A. Chilkoti, D. R. Smith, A. A. Lazarides, ACS nano, 4, 6535–6546 (2010).


Review

For citations:


Golmohammadi S., Etemadi M. ANALYSIS OF PLASMONIC GOLD NANOSTAR ARRAYS WITH THE OPTIMUM SERS ENHANCEMENT FACTOR ON THE HUMAN SKIN TISSUE. Zhurnal Prikladnoii Spektroskopii. 2019;86(5):838(1)-838(9).

Views: 525


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)