Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

WAVELET-BASED NOISE REMOVAL FROM RAMAN SIGNAL TO STUDY PLD COATED FORSTERITE-HYDROXYAPATITE THIN FILM ON STAINLESS STEEL 316L SUBSTRATE

Abstract

Raman spectroscopy is proposed here for the study of forsterite-hydroxyapatite (FS-HA) composite coating on a stainless-steel substrate. However, in order to analyze the Raman spectrum accurately, noise and background removal is always required. A comparative study has been done for the correction of background. The wavelet-based denoising of the signal was done using level 6 decomposition with sym4 wavelet and the thresholding method used was soft thresholding. In the present work, the effectiveness of the wavelet-based denoising method has been compared with Savitsky–Golay smoothing, quadratic regression, and low pass filter method. It is found that the wavelet-based denoising method works better as compared to other methods as it is able to smooth the signal and to increase the SNR while maintaining the peak intensity undistorted. Peaks are calculated for the different composition of the HA-FS composite. The variation of peak location in the processed Raman spectra suggests that the variation in concentration of FS and HA in the coating can be studied by using Raman spectroscopy.

About the Authors

P. S. Prakash
Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad
India
Prayagraj- 211004, Uttar Pradesh


T. S. Sharan
School of Biomedical Engineering, Indian Institute of Technology (BHU)
India
Varanasi-221003, Uttar Pradesh


S. J. Pawar
Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad
India
Prayagraj- 211004, Uttar Pradesh


R. P. Tewari
Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad
India
Prayagraj- 211004, Uttar Pradesh


S. Sharma
School of Biomedical Engineering, Indian Institute of Technology (BHU)
India
Varanasi-221003, Uttar Pradesh


References

1. S.-I. Akimoto, Y. Matsui, Y. Syono, The Physics and Chemistry of Minerals and Rocks, 327 (1976).

2. S. Ramesh, A. Yaghoubi, K. S. Lee, K. C. Chin, J. Purbolaksono, M. Hamdi, M. A. Hassan, J. Mech. Behav. Biomed. Mater., 25, 63 (2013).

3. S. Ni, L. Chou, J. Chang, Ceram. Int., 33, 83 (2007).

4. S. R. Levitt, P. H. Crayton, E. A. Monroe, R. A. Condrate, J. Biomed. Mater. Res., 3, 683 (1969).

5. M. H. Fathi, A. Hanifi, Mater. Lett., 61, 3978 (2007).

6. Y.-M. Sung, J.-C. Lee, J.-W. Yang, J. Cryst. Growth, 262, 467 (2004).

7. Y.-M. Sung, D.-H. Kim, J. Cryst. Growth, 254, 411 (2003).

8. M. A. Minnath, In Fundamental Biomaterials: Metals, Elsevier, 167–174 (2018).

9. I. Milošev, Pure Appl. Chem., 83, 309 (2010).

10. M. A. Ward, T. K. Georgiou, Polymers, 3, 1215 (2011).

11. I. Ibrahim, E. Sadiku, T. Jamiru, A. Hamam, W. K. Kupolati, Curr. Trends Biomed. Eng. Biosci., 4, 9 (2017).

12. J. Chevalier, L. Gremillard, J. Eur. Ceram. Soc., 29, 1245 (2009).

13. A. Iftekhar, Standard Handbook of Biomedical Engineering and Design, McGraw-Hill Companies (2004).

14. L. Zhao, P. K. Chu, Y. Zhang, Z. Wu, J. Biomed. Mater. Res., Part B: Appl. Biomater., 91, 470 (2009).

15. L. A. Thomson, F. C. Law, N. Rushton, J. Franks, Biomaterials, 12, 37 (1991).

16. L. Tang, P. Thevenot, W. Hu, Curr. Top. Med. Chem., 8, 270 (2008).

17. K. De Groot, J. G. C. Wolke, J. A. Jansen, Proc. Inst. Mech. Eng., H: J. Eng. Med., 212, 137 (1998).

18. J. A. Davidson, P. Kovacs, US Patent 5, 169, 597 (December 1992).

19. P. S. Prakash, S. J. Pawar, R. P. Tewari, Proc. Inst. Mech. Eng., L: J. Mater.: Des. Appl., 1464420717705151 (2017).

20. H. Khandelwal, G. Singh, K. Agrawal, S. Prakash, R. D. Agarwal, Appl. Surf. Sci., 265, 30 (2013).

21. T. J. Vickers, R. E. Wambles Jr., C. K. Mann, Appl. Spectrosc., 55, 389 (2001).

22. http://www.Chem.Uoa.Gr/Applets/Appletsmooth/Appl_smooth2.Html (Background on Ensemble Averaging) (2013).

23. A. Savitzky, M. J. Golay, Anal. Chem., 36, 1627 (1964).

24. F. Ehrentreich, L. Sümmchen, Anal. Chem., 73, 4364 (2001).

25. H. Chen, W. Xu, N. Broderick, J. Han, J. Raman Spectrosc., 49, 1529 (2018).

26. K. F. McCarty, D. R. Boehme, J. Solid. State Chem., 79, 19 (1989).

27. J. E. Maslar, W. S. Hurst, W. J. Bowers Jr, J. H. Hendricks, Corrosion, 58, 739 (2002).

28. B. Mihailova, B. Kolev, C. Balarew, E. Dyulgerova, L. Konstantinov, J. Mater. Sci., 36, 4291 (2001).

29. D. C. O’shea, M. L. Bartlett, R. A. Young, Arch. Oral Biol., 19, 995 (1974).

30. W. P. Griffith, J. Chem. Soc. A: Inorg., Phys., Theor., 286 (1970).

31. G. R. Sauer, W. B. Zunic, J. R. Durig, R. E. Wuthier, Calcified Tissue Int., 54, 414 (1994).

32. B. O. Fowler, M. Markovic, W. E. Brown, Chem. Mater., 5, 1417 (1993).

33. H. Tsuda, J. Arends, J. Dent. Res., 72, 1609 (1993).


Review

For citations:


Prakash P.S., Sharan T.S., Pawar S.J., Tewari R.P., Sharma S. WAVELET-BASED NOISE REMOVAL FROM RAMAN SIGNAL TO STUDY PLD COATED FORSTERITE-HYDROXYAPATITE THIN FILM ON STAINLESS STEEL 316L SUBSTRATE. Zhurnal Prikladnoii Spektroskopii. 2020;87(3):507(1)-507(8).

Views: 385


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)