Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search

ESTIMATION OF LATTICE STRAIN IN ZnO NANOPARTICLES PRODUCED BY LASER ABLATION AT DIFFERENT TEMPERATURES

Abstract

The effects of water temperature on the characteristics of ZnO nanoparticles produced by laser ablation method in water were investigated experimentally. The nanoparticles were prepared by pulsed laser ablation of a zinc metal target in distilled water at different temperatures. The synthesized ZnO nanoparticles were characterized using X-ray diffraction analysis and transmission electron microscopy. The results show that the produced samples are crystalline with a hexagonal wurtzite phase. Transmission electron microscopy has revealed that the ZnO nanoparticles are spherical. The strain and the crystallite size of the nanoparticles were investigated by X-ray peak broadening. The mean crystallite size of the ZnO nanoparticles estimated from the TEM images is in good agreement with three models of the Williamson-Hall method. According to the results, the size distribution of the produced ZnO nanoparticles depends strongly on the temperature of the ablation environment.

About the Authors

E. . Solati
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University
Russian Federation


D. . Dorranian
Plasma Physics Research Center, Science and Research Branch, Islamic Azad University
Russian Federation


References

1. C. Y. Lee, Y. T. Haung, W. F. Su, C. F. Lin, Appl. Phys. Lett., 89, 231116 (2006).

2. Y. Gong, T. Andelman, G. F. Neumark , S. O’Brien, I. L. Kuskovsky, Nanoscale Res. Lett., 2, 297-302 (2007).

3. H. Zeng, Z. Li, W. Cai, B. Cao, P. Liu, S. Yang, J. Phys. Chem. B, 111, 14311-14317 (2007).

4. A. Abdolvand, S. Z. Khan, Y. Yuan, P. L. Crouse, M. J. J. Schmidt, M. Sharp, Z. Liu, L. Li, Appl. Phys. A, 91, 365 (2008).

5. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys., 11, 3805 (2009).

6. D. Dorranian, E. Solati, L. Dejam, Appl. Phys. A., 109, 307-314 (2012).

7. S. C. Singh, R. Gopal, Appl. Surf. Sci., 258, 2211-2218 (2012).

8. E. Solati, M. Mashayekh, D. Dorranian, Appl. Phys. A, 112, 689-694 (2013).

9. E. Solati, L. Dejam, D. Dorranian, Opt. Laser Technol., 58, 26-32 (2014).

10. E. Solati, D. Dorranian, J. Clust. Sci., 26, 727-742 (2015).

11. Ch. Zhao, Y. Huang, J. T. Abiade, Mater. Lett., 85, 164-167 (2012).

12. A. Khorsand Zak, W. H. Abd. Majid, M. E. Abrishami, R. Yousefi, Solid State Sci., 13, 251-256 (2011).

13. V. D. Mote, Y. Purushotham, B. N. Dole, J. Theor. Appl. Phys., 6, 1-8 (2012).

14. P. Bindu, Sabu Thomas, J. Theor. Appl. Phys., 8, 1-12 (2014).

15. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A. Ch. Bose, Solid State Commun., 149, 1919-1923 (2009).

16. C. Suryanarayana, M. G. Norton, X-Ray Diffraction a Practical Approach, Plenum Press, New York (1998).

17. M. Tiemann, F. Marlow, J. Hartikainen, O. Weiss, M. Linder, J. Phys. Chem. C, 112, 1463-1467 (2008).

18. A. J. Saldivar-Garcia, H. F. Lopez, Metall. Mater.Trans. A, 35, 2517-2523 (2004).

19. K. Venkateswarlu, A. ChandraBose, N. Rameshbabu, Physica B, 405, 4256-4261 (2010).

20. J. Zhang, Y. Zhang, K.W. Xu, V. Ji, Solid State Commun., 139, 87-91 (2006).

21. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford Science Publications, New York (1985).

22. H. Zeng, W. Cai, Y. Li, J. Hu, P. Liu, J. Phys. Chem. B, 109, 18260-18266 (2005).


Review

For citations:


Solati E., Dorranian D. ESTIMATION OF LATTICE STRAIN IN ZnO NANOPARTICLES PRODUCED BY LASER ABLATION AT DIFFERENT TEMPERATURES. Zhurnal Prikladnoii Spektroskopii. 2017;84(3):475-482. (In Russ.)

Views: 260


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0514-7506 (Print)