Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Luminescence in the LiF-MgF2 System Activated by Rare Earths (In Engl.)

Abstract

In recent years, several reports have appeared on luminescence in LiMgF3. Important applications have also been claimed. There is no record of LiMgF3 in the ICDD database. In light of the crystallographic studies on ABF3 compounds and especially the finding that LiMgF3 is not formed, the reports on the LiMgF3 based phosphors appear interesting. Our reinvestigation confirmed that LiMgF3 does not exist. It is quite likely that the interesting properties described in the literature for LiMgF3, in fact, belong to the frozen eutectic or two-phase system. All the same, the existence of eutectic was exploited to melt MgF2 at much lower temperature (735°C) than the melting point of MgF2 (1263°C). We prepared LiF-MgF2:Eu2+ and LiFMgF2:Ce3+ by melting at 735°C. These materials exhibited properties similar to those of MgF2:Eu2+ and MgF2:Ce3+ phosphors, respectively. Thus, using the lower melting point of eutectic, it might be possible to prepare various MgF2 based phosphors at temperatures as low as 735°C, against the high melting point of 1263°C for MgF2.

About the Authors

V. S. Singh
Shri Ramdeobaba College of Engineering and Management
India

Nagpur



P. D. Belsare
Shri Ramdeobaba College of Engineering and Management
India

Nagpur



S. V. Moharil
Department of Physics, R. T. M. Nagpur University
India

Nagpur



References

1. V. V. Sliznev, V. G. Solomonik, J. Struct. Chem., 26, 667–674 (1986).

2. O. P. Charkin, N. M. Klimenko, M. L. McKee, Russ. J. Inorg. Chem., 45, 879–891 (2000).

3. I. C. Munoz, F. Brown, R. I. Baldenevro, V. R. Orante-Barron, C. Cruz-Vazquez, C. Furetta, R. Bernal, Mater. Res. Soc. Symp. Proc., 1278, S08–S26 (2010).

4. G. Kitis, C. Furetta, C. Sanipoli, Y. S. Horowitz, L. Oster, Radiat. Prot. Dosim., 100, 247–250 (2002).

5. I. C. Munoz, E. Cruz-Zaragoza, A. Favalli, C. Furetta, Appl. Radiat. Isot., 70, 893–896 (2012).

6. R. Bernal, K. R. Alday-Samaniego, C. Furetta, E. Cruz-Zaragoza, G. Kitis, F. Brown, C. Cruz-Vazquez, Radiat. Eff. Def. Solids, 162, 699–708 (2007).

7. L. Struye, P. Leblans, Europ. Patent, EP 1 150 303 A1 (2000).

8. A. S. Pradhan, J. I. Lee, J. L. Kim, J. Med. Phys., 3, 85–99 (2008).

9. C. Dotzler, G. V. M. Williams, A. Edgar, Appl. Phys. Lett., 91, 121910(1–3) (2007).

10. H. J. Seo, B. K. Moon, T. Tsuboi, Phys. Rev. B, 62, 12688–12695 (2000).

11. N. S. Ugemuge, S. M. Dhopte, P. L. Muthal, S.V. Moharil, Int. J. SHS, 21, 162–166 (2012).

12. G. Zhu, Q. Yang, X. Shi, W. Zheng, Y. Liu, J. Rare Earths., 30, 985–989 (2012).

13. J. L. Sommerdijk. J.M.P.J. Versteegen, A. Bril, J. Lumin., 10, 411–413 (1975).

14. A. J. Wojtowicz, J. Glodo, D. Wisniewski, A. Lempicki, J. Lumin., 72, 731–733 (1997).

15. B. C. Hong, K. Kawano, J. Alloys Compd., 408, 838–841 (2006).

16. S. Lizzo, A. Meijerink, D. J. Dirksen, G. Blasse, J. Lumin., 63, 223–234 (1995).

17. S. Lizzo, A. H. Velders, A. Meijerink, D. J. Dirksen, G. Blasse, J. Lumin., 65, 303–311 (1996).

18. C. K. Duana, A. Meijerink, R. J. Reeves, M. F. Reid, J. Alloys Compd., 408, 784–787 (2006).

19. O. E. Facey, W. A. Sibley, Phys. Rev., 186, 926–932 (1969).

20. R. T. Williams, C. L. Marquardt, J. W. Williams, M. N. Kabler, Phys. Rev. B, 15, 5003–5011 (1977).

21. R. F. Blunt, M. I. Cohen, Phys. Rev., 153, 1031–1038 (1967).

22. L. A. Kappers, S. I. Yun, W. A. Sibley, Phys. Rev. Lett., 29, 943–946 (1972).

23. S. I. Yun, L. A. Kappers, W. A. Sibley, Phys. Rev. B, 8, 773–779 (1973).

24. S. I. Yun, K. H. Lee, W. A. Sibley, W. E. Vehse, Phys. Rev. B, 10, 166516–166572 (1974).

25. W. Chen, S. L.Westcott, S. Wang, Y. Liu, J. Appl. Phys., 103, 113103(1–5) (2008).

26. J. Trojan-Piegza, J. Glodo, V. K. Sarin, Radiat. Meas., 45, 163–167 (2010).

27. N. Kawaguchi, K. Fukuda, T. Yanagida, Y. Fujimoto, Y. Yokota, T. Suyama, K. Watanabe, A. Yamazaki, A. Yoshikawa, Nucl. Instrum. Methods A, 652, 209–211 (2011).

28. T. Yanagida, K. Fukuda, Y. Fujimoto, N. Kawaguchi, S. Kurosawa, A. Yamazaki, K. Watanabe, Y. Futami, Y. Yokota, J. Pejchal, A. Yoshikawa, A. Uritani, T. Iguchi, Opt. Mater., 34, 868–871 (2012).

29. N. Kodama, T. Hoshino, M. Yamaga, N. Ishizawa, K. Shimamura, T. Fukuda, J. Cryst. Growth, 229, 492–496 (2001).

30. I. Jackson, Phys. Earth Planet. Int., 14, 86–94 (1977).

31. G. Tacchini, Gazz. Chim. Ital., 54, 777–780 (1924).

32. G. Bruni, G. K. Lcvi, Atti Accad. Lincei, 33II, 377–384 (1924).

33. A. Ferrari, Atti Accad. Lincei, 6I, 664–671 (1925).

34. E. Zintl, A. Udgird, Z. Anorg. Allgem. Chem., 240, 150–156 (1939).

35. A. G. Bergman, E. P. Dergunov, Compt. Rend. Acad. Sci. U.R.S.S, 31, 755–756 (1941).

36. W. E. Counts, R. Roy, E. F. Osborn, J. Am. Ceram. Soc., 36, 12–17 (1953).

37. P. D. Belsare, Study of Luminiscence in Fluorides, Ph. D. Thesis, R. T. M. Nagpur University (2009).


Review

For citations:


Singh V.S., Belsare P.D., Moharil S.V. Luminescence in the LiF-MgF2 System Activated by Rare Earths (In Engl.). Zhurnal Prikladnoii Spektroskopii. 2022;89(1):30-34.

Views: 346


ISSN 0514-7506 (Print)