Low-Temperature Solid-State Synthesis of FePO4 as a Heterogeneous Fenton-Like Catalyst for the Degradation of Methyl Blue
Abstract
A potential iron phosphate (FePO4) catalyst was prepared using a low-temperature solid-state method for the heterogeneous Fenton-like degradation of methyl blue (MB). A variety of parameters affecting the MB removal rate, including temperature, initial pH, catalyst usage, H2O2 and MB concentration, was studied in detail. The prepared FePO4 exhibited a highly efficient catalytic reaction with seven cycle performance. In addition, a free radical masking experiment revealed the existence of a hydroxyl radical (•OH) and indicated that the degradation of MB was mainly due to the oxidation caused by •OH. This work suggests FePO4 is an efficient material, which is responsible for the catalytic degradation of the azo dye MB through a heterogeneous Fenton-like system.
Keywords
About the Authors
Q. ZhangChina
Fuzhou
X. Li
China
Fuzhou
Q. Wang
China
Fuzhou
S. Wang
China
Fuzhou
References
1. G. Zhang, I. Okajima, T. Sako, J. Supercrit, Fluids, 112, 136–142 (2016).
2. M. Chethana, L. G. Sorokhaibam, V. M. Bhandari, S. Raja, V. V. Ranade, ACS Sustain. Chem. Eng., 4, No. 5, 2495–2507 (2016).
3. Z. Han, N. Wang, H. Zhang, X. Yang, J. Appl. Spectrosc., 83, No. 6, 1007–1011 (2017).
4. Y. H. Zhang, B. Lai, Y. X. Zhou, J. L. Wang, P. Yang, J. Appl. Spectrosc., 80, No. 5, 681–693 (2013).
5. K. Plakas, A. Mantza, S. Sklari, V. Zaspalis, A. Karabelas, Chem. Eng. J., 373, 700–708 (2019).
6. D. Huang, C. Hu, G. Zeng, M. Cheng, P. Xu, X. Gong, R. Wang, W. Xue, Sci. Tot. Environ., 574, 1599–1610 (2017).
7. Y. Wang, C. Feng, Y. Li, J. Gao, C.-P. Yu, Chem. Eng. J., 307, 679–686 (2017).
8. S. Tao, J. Yang, H. Hou, S. Liang, K. Xiao, J. Qiu, J. Hu, B. Liu, W. Yu, H. Deng, Chem. Eng. J., 372, 966–977 (2019).
9. M. Cheng, C. Lai, Y. Liu, G. Zeng, D. Huang, C. Zhang, L. Qin, L. Hu, C. Zhou, W. Xiong, Coord. Chem. Rev., 368, 80–92 (2018).
10. R. Zhou, X. Zhang, K. Bazaka, K. K. Ostrikov, Front. Chem. Sci. Eng., 13, No. 2, 340–349 (2019).
11. C. Nadejde, M. Neamtu, V. D. Hodoroaba, R. J. Schneider, A. Paul, G. Ababei, U. Panne, J. Nanopart. Res., 17, No. 12, 476 (2015).
12. D. Li, C. Pan, R. Shi, Y. Zhu, Cryst. Eng. Commun., 13, 6688–6693 (2011).
13. Z. J. Li, G. Ali, H. J. Kim, S. H. Yoo, S. O. Cho, Nanoscale Res. Lett., 9, No. 1, 276 (2014).
14. H. Zhou, X. Yue, H. Lv, L. Kong, Z. Ji, X. Shen, Ceram. Int., 44, 7240–7244 (2018).
15. W. Chen, Y. Chen, W. Wu, T. Li, C. Zhang, Y. Zhou, J. Wu, J. Supercond. Nov. Magn., 29, No. 1, 115–122 (2016).
16. H. Xu, V. Vuorinen, H. Dong, M. Paulasto-Kröckel, J. Alloy. Compd., 619, 325–331 (2015).
17. P. Hao, Z. Zhao, J. Tian, Y. Sang, G. Yu, H. Liu, S. Chen, W. Zhou, Acta Mater., 62, 258–266 (2014).
18. N. Inchaurrondo, J. Font, C. P. Ramos, P. Haure, Appl. Catal. B-Environ., 181, 481–494 (2016).
19. M. Khachani, A. El Hamidi, M. Kacimi, M. Halim, S. Arsalane, Thermochim. Acta, 610, 29–36 (2015).
20. S. Y. Lee, D.-H. Kim, S. C. Choi, D.-J. Lee, J. Y. Choi, H.-D. Kim, Microporous Mesoporous Mater., 194, 46–51 (2014).
21. G. Yang, B. Ding, J. Wang, P. Nie, H. Dou, X. Zhang, Nanoscale, 8, No. 16, 8495–8499 (2016).
22. Y. Yin, H. Zhang, P. Wu, B. Zhou, C. Cai, Nanotechnology, 21, No. 42, 425504 (2010).
23. X. Wang, W. Yang, Y. Ji, X. Yin, Y. Liu, X. Liu, F. Zhang, B. Chen, N. Yang, RSC Adv., 6, 26155–26162 (2016).
24. X. Guan, J. Chang, Z. Xu, Y. Chen, H. Fan, RSC Adv., 6, No. 35, 29054–29063 (2016).
25. L. Qin, G. Zhang, Z. Fan, Y. Wu, X. Guo, M. Liu, Chem. Eng. J., 244, 296–306 (2014).
26. N. Wang, T. Zheng, G. Zhang, P. Wang, J. Environ. Chem. Eng., 4, No. 1, 762–787 (2016).
27. A. Cihanoğlu, G. Gündüz, M. Dükkancı, Appl. Catal. B Environ., 165, 687–699 (2015).
28. S. Wang, C. Zhao, D. Wang, Y. Wang, F. Liu, RSC Adv., 6, No. 23, 18800–18808 (2016).
Review
For citations:
Zhang Q., Li X., Wang Q., Wang S. Low-Temperature Solid-State Synthesis of FePO4 as a Heterogeneous Fenton-Like Catalyst for the Degradation of Methyl Blue. Zhurnal Prikladnoii Spektroskopii. 2022;89(1):136-142.