

Investigation of Optical Spectra and Electron Paramagnetic Resonance Parameters for Cu2+ Ions in LiNbO3 Crystal
Abstract
The optical spectrum band positions and electron paramagnetic resonance (EPR) parameters – g factors (gx, gy, gz) and the hyperfine structure constants (Ax, Ay, Az) for Cu2+ doped in LiNbO3 crystal are theoretically investigated using the perturbation formulas of these EPR parameters for a 3d9 ion under rhombically elongated octahedra based on the cluster approach. The doped Cu2+ was assumed to substitute for the host Li+ in the lattice, with a different local environment from the original Li+ due to size mismatch and the Jahn–Teller effect. Based on the calculations, the Cu-O bonds are found to suffer the axial elongation δz (~0.0611 Å) along the z-axis, and the planar bond length experiences an additional variation δr (~0.0861 Å) along the x- and y-axis respectively. Meanwhile, the ground-state wave function for the Cu2+ center in LiNbO3 was also obtained.
About the Authors
Z.-F. ZhouChina
Shangrao Jiangxi
F. Chen
China
Shangrao Jiangxi
J. Yang
China
Shangrao Jiangxi
References
1. T. P. J. Han, F. Jaque, Opt. Mater., 29, 1041–1043 (2007).
2. Ch. H. Kwak, G. Y. Kim, B. Javidi, Opt. Commun., 437, 95–103 (2019).
3. L. Zhu, D. Zheng, S. Saeed, S. Wang, H. Liu, Y. Kong, S. Liu, S. Chen, L. T. Zhang, J. D. Xu, Crystals, 8, 322, 1–8 (2018).
4. T. Tian, Y. F. Kong, S. G. Liu, W. Li, L. Wu, S. L. Chen, J. J. Xu, Opt. Lett., 37, 2679–2681 (2012).
5. L. Dai, Y. Shao, C. R. Liu, R. R. Chen, X. B. Han, S. X. Yang, Opt. Mater., 95, 109193 (2019).
6. A. V. Yatsenko, S. M. Kostritskii, Tech. Phys., 65, 622–626 (2020).
7. C. Xu, L. Xu, X. Leng, Y. Xu, C. Yang, Cryst. Res. Tech., 47, 19–24 (2012).
8. N. V. Sidorov, M. N. Palatnikov, N. A. Teplyakova, R. A. Titov, K. Bormanis, Integr. Ferroelectr., 196, 39–42 (2019).
9. H. N. Dong, P. Li, Spectrochim. Acta A, 76, 33–36 (2010).
10. R. Kripal, S. D. Pandey, Physica B, 444, 14–20 (2014).
11. H. N. Dong, X. S. Liu, Mol. Phys., 113, 492–496 (2015).
12. M. Fidan, F. Semerci, E. Sahin, O. Z. Yesilel, R. Tapramaz, Y. Sahin, Spectrochim. Acta A, 110, 437–442 (2013).
13. H. M. Zhang, W. B. Xiao, X. Wan, Physica B, 449, 225–228 (2014).
14. R. Kripal, S. Shukla, Phys. Scr., 83, 035702, 1–6 (2011).
15. A. K. Yetrosyan, R. M. Khaghatryan, E. G. Sharoya, Phys. Status Solidi b, 122, 725–734 (1984).
16. M. Q. Kuang, S. Y. Wu, H. M. Zhang, Optik, 123, 1601–1604 (2012).
17. H. M. Zhang, W. B. Xiao, J. Alloys Compd., 745, 586–591 (2018).
18. A. M. Glass, J. Chem. Phys., 50, 1501–1510 (1969).
19. L. Sun, J. Guo, R. Zhang, E. Cao, Y. Zhang, W. Hao, L. Ju, J. Magn. Magn. Mater., 449, 545–551 (2018).
20. K. Mukai, T. D. Inoue, Y. Kato, S. Shirai, ACS Omega, 2, 864–872 (2017).
21. C. Wu, J. Zhong, J. Xie, D. Wang, Y. Shi, Q. Chen, H. Yan, J. Zhu, Appl. Surf. Sci., 484, 112–123 (2019).
22. H. M. Zhang, S. Y. Wu, M. Q. Kuang, Z. H. Zhang, J. Phys. Chem. Solids, 73, 846–850 (2012).
23. A. S. Chakravarty, Introduction to the Magnetic Properties of Solids, Wiley Interscience Publ., New York (1980).
24. K. Küçük, Y. Çelik, R. Sahin, B. Karabulut, Ö. Andaç, N. Dege, Chem. Phys. Lett., 592, 59–63 (2014).
25. E. Borkurt, I. Kartal, B. Karabulet, I. Ucar, Spectrochim. Acta A, 71, 794–797 (2008).
26. H. M. Zhang, B. J. Chen, C. D. Feng, W. B. Xiao, Appl. Magn. Res., 50, 1205–1217 (2019).
27. B. R. McGarvey, J. Phys. Chem., 71, 51–66 (1967).
28. H. N. Dong, S. Y. Wu, P. Li, Phys. Status Solidi b, 241, 1935–1938 (2004).
29. S. Y. Wu, X. Y. Gao, H. N. Dong, J. Magn. Magn. Mater., 301, 67–73 (2006).
30. J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, London (1964).
31. D. J. Newman, B. Ng, Rep. Prog. Phys., 52, 699–762 (1989).
32. H. M. Zhang, J. H. Duan, W. B. Xiao, X. Wan, J. Non-Cryst. Solids, 425, 173–175 (2015).
33. C. C. Ding, X. H. Chu, L. Jia, X. Wang, Y. Li, Z. Q. Wang, J. Fu, J. Non-Cryst. Solids, 532, 119896 (2020).
34. C. Rudowicz, Y. Y. Zhou, J. Magn. Magn. Mater., 111, 153–163 (1992).
35. H. N. Dong, Z. Naturforschung A, 60, 615–618 (2005).
36. H. M. Zhang, J. Magn. Magn. Mater., 389, 176–179 (2015).
37. Y. X. Hu, S. Y. Wu, X. F. Wang, Philos. Mag., 90, 1391–1400 (2010).
38. S. Y. Wu, H. M. Zhang, P. Xu, S. X. Zhang, Spectrochim. Acta A, 75, 230–234 (2010).
39. K. H. Karlsson, T. Perander, Chem. Scr., 3, 201–205 (1973).
40. C. K. Jorgensen, Absorption Spectra and Chemical Bonding in Complexes, 2nd ed., Pergamon Press, Oxford (1964).
41. E. Clementi, D. L. Raimondi, J. Chem. Phys., 38, 2686–2689 (1963).
42. E. Clementi, D. L. Raimondi, W. P. Reinhardt, J. Chem. Phys., 47, 1300–1307 (1967).
43. E. Bozkurt, B. Karabulut, İ. Kartal, Y. S. Bozkurt, Chem. Phys. Lett., 477, 65–69 (2009).
44. I. Uçar, Spectrochim. Acta A, 72, 399–406 (2009).
45. I. Uçar, B. Karabulut, A. Bulut, O. Büyükgüngör, Spectrochim. Acta A, 71, 1239–1245 (2008).
46. H. M. Zhang, W. B. Xiao, X. Wan, Radiat. Ef. Defects Solids, 169, 603–609 (2014).
47. C. C. Ding, S. Y. Wu, Q. S. Zhu, Z. H. Zhang, B. H. Teng, M. H. Wu, J. Phys. Chem. Sol., 86, 141–147 (2015).
48. H. M. Zhang, C. Yan, Q. S. Zhu, Magn. Res. Chem., 57, 144–148 (2019).
49. C. C. Ding, S. Y. Wu, X. F. Hu, G. L. Li, Y. Q. Xu, J. Alloys Compd., 664, 250–255 (2016).
50. Y. D. Li, B. J. Chen, C. Yan, H. M. Zhang, W. B. Xiao, Radiat. Ef. Defects Solids, 175, 952–960 (2020).
Review
For citations:
Zhou Z., Chen F., Yang J. Investigation of Optical Spectra and Electron Paramagnetic Resonance Parameters for Cu2+ Ions in LiNbO3 Crystal. Zhurnal Prikladnoii Spektroskopii. 2022;89(2):191-197.