Chocolate Sample Classification by Principal Component Analysis of Preprocessed Terahertz Transmission Spectra
https://doi.org/10.47612/0514-7506-2022-89-2-198-203
Abstract
We demonstrate the efficiency of the chocolate sample classification by type and manufacturer using the “spectral print” method using THz transmission spectra. To suppress the noise and the Fabry–Perot effect, spectra baselines are determined using the adaptive iteratively reweighted penalized least squares (airPLS) method. The classification was carried out by constructing a low-dimensional space of the principal components of the baselines and applying the methods of cluster analysis in this space. The precision and recall values of the classification of chocolate samples by the k-means, classification and regression tree and hierarchical cluster analysis are 0.85 and 0.83, 0.91 and 0.90, 0.94 and 0.93, respectively. The support vector machine is successfully applied to consider two cases where pairwise classification is most problematic.
About the Authors
M. A. KhodasevichBelarus
Minsk
A. V. Lyakhnovich
Belarus
Minsk
H. Eriklioğlu
Turkey
Ankara
References
1. C. McVey, C. T. Elliott, A. Cannavan, S. D. Kelly, A. Petchkongkaew, S. A. Haughey. Trends Food Sci. Technol. B, 118 (2021) 777—790
2. A. Arroyo-Cerezo, A. M. Jimenez-Carvelo, A. González-Casado, A. Koidis, L. Cuadros-Rodríguez. LWT – Food Sci. Technol., 149 (2021) 111822(1—8)
3. H. N. Moghaddam, Z. Tamiji, M. A. Lakeh, M. R. Khoshayand, M. H. Mahmoodi. J. Food Comp. Anal., 107 (2022) 104343
4. X. Sun, D. Cui, Y. Shen, W. Li, J. Wang. Infrared Phys. Technol., 121 (2022) 104018
5. I. Magnus, M. Virte, H. Thienpont, L. Smeesters. Food Control, 130 (2021) 108342(1—10)
6. А. М. Гончаренко, Г. В. Синицын, А. В. Ляхнович, В. Л. Малевич. Сб. науч. тр., IV Конгресс физиков Беларуси, 24—26 апреля, Минск (2013) 82—83
7. R. Fastampa, L. Pilozzi, M. Missori. Phys. Rev. A, 95 (2017) 063831(1—6)
8. J. Oblitas, J. Ruiz. Proceedings, 70, N 1 (2021) 109(1—6), doi: 10.3390/foods_2020-08029
9. S. Weiller, T. Tanabe, Y. Oyama. World J. Eng. Technol., 6 (2018) 268—274
10. R. Ríos-Reina, J. M. Camiña, R. M. Callejón, S. M. Azcarate. Trends Anal. Chem., 134 (2021) 116121(1—21)
11. K. H. Esbensen, P. Geladi. In: Comprehensive Chemometrics, Eds. S. Brown, R. Tauler, B. Walczak, Elsevier (2009) 211—226
12. Z. M. Zhang, S. Chen, Y. Z. Liang. Analyst, 135, N 5 (2010) 1138—1146
13. P. Govender, V. Sivakumar. Atm. Poll. Res., 11 (2020) 40—56
14. J. Huang, J. Liu, K. Wang, Z. Yang, X. Liu. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 198 (2018) 198—203
15. K. Herberger. In: Medical Applications of Mass Spectrometry, Eds. K. Vékey, A. Telekes, A. Vertes, Elsevier (2008) 141—169
16. T. W. Liao. Pattern Recognition, 38 (2005) 1857—1874
17. Y. Xu, S. Zomer, R. G. Brereton. Critical Rev. Anal. Chem., 36 (2006) 177—188
Review
For citations:
Khodasevich M.A., Lyakhnovich A.V., Eriklioğlu H. Chocolate Sample Classification by Principal Component Analysis of Preprocessed Terahertz Transmission Spectra. Zhurnal Prikladnoii Spektroskopii. 2022;89(2):198-203. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-2-198-203