Deep UV Led Dynamic Optical Imaging and Fluorescence Spectroscopy of the Protein Corona in a Plasmonic Solution and the Effect of Near-Infrared Laser Heating
Abstract
When plasmonic nanoparticles (PNPs) enter a biofluid, the adsorbed biomolecules on the surface form a protein corona, which has direct consequences in biomedical applications. The binding in passive adsorption is nonspecific and is governed by ionic, van der Waals, and hydrophobic forces. We describe the results of deep LED (275-nm) interaction with bovine serum albumin (BSA) containing gold nanourchin (GNU) using dynamic beam view profiling and fluorescence spectroscopy. 800-nm diode laser-induced thermal effects on the bioplasmonic solution were investigated using probe beam monitoring and an IR camera. The results indicated a consistent nonlinear and oscillatory behavior of the GNU-BSA complex due to the adsorption and desorption process of protein. Tyrosine (Tyr) fluorescence enhancement and quenching were observed, which can provide some information about the binding kinetics and protein conformational changes. After 10 min of laser heating, the Tyr fluorescence completely vanished and the He-Ne probe beam was broadened by about 4 nm owing to molecular collisions and protein denaturation. The temperature variation due to protein unfolding and denaturation exhibited a similar nonlinear pattern at different GNU volumes. However, the temperature was lower at higher GNU concentrations, indicating a higher rate of protein adsorption, which effectively mitigated the localized surface plasmon resonance heating.
Keywords
About the Authors
M. E. KhosroshahiCanada
Ontario
V. Woll-Morison
Canada
Ontario
References
1. J. Albanese, P. Tang, W. Chan, Ann. Rev. Biomed. Eng., 14, 1–16 (2012).
2. K. Jain, Clin. Chem., 53, 2002–2009 (2007).
3. P. Sharma, S. Brown, G. Walter, S. Santra, Adv. Colloid Interface Sci., 471-485, 123–126 (2016).
4. Y. Huang, Sh. He, W. Cao, K. Cai, X. Liang, Nanoscale, 4, 6135 (2012).
5. M. E. Khosroshahi, A. Mandelis, B. Lashkari, J. Biomed. Opt., 20, 076009 (2015).
6. V. Pattani, J. Tunnell, Lasers Surg. Med., 44, 675–684 (2012).
7. M. E. Khosroshahi, Z. Hassannejad, M. Firouzi, A. Arshi, Lasers Med. Sci., 30, 1913–1922 (2015).
8. J. Estelrich, E. Escribano, J. Queralt, Int. J. Mol. Sci., 16, 8070–8101 (2015).
9. M. E. Khosroshahi, L. Ghazanfari, Z. Hassannejad, S. Lenhert, Nanomed. Nanotech., 6, 1–9 (2015).
10. J. Finbloom, F. Sousa, M. Stevens, T. Desa, Adv. Drug Deliv. Rev., 167, 89–108 (2020).
11. P. Tartaj, M. Morales, S. Verdaguer, T. Gonzaleze-Carreno, C. Serna, J. Phys. D: Appl. Phys., 36, R182–183 (2003).
12. R., Gref, Y. Minamitake, M. Peracchia, V. Trubetskoy, V. Torchilin, Science, 263, 1600–1603 (1994).
13. P. Jain, P. Seok, I. El-Sayed, M. El-Sayed, J. Phys. Chem. B, 110, 7238–7248 (2006).
14. C. Noguez, J. Phys. Chem., 111, 3806–3819 (2007).
15. Z. Hasannejad, M. E. Khosroshahi, Opt. Mat., 35, 644–651 (2013).
16. K. Willets, R. Van Dune, Ann. Phys. Rev. Chem., 58, 267–297 (2007).
17. V. Pustovalov, V. Babenkov, Laser Phys. Lett., 10, 516–520 (2004).
18. P. Koegler, A. Clayton, H. Thissen, Adv. Drug Del., 64, 1820–1839 (2012).
19. M. Zehfus, G. Rose, Biochemistry, 25, 5759–5765 (1986).
20. R. Rodriguez-Oliveros, J. Sanchez-Gill, Opt. Exp., 20, 621–626 (2012).
21. D. Tsai, F. DelRio, A. Kneene, K. Tyner, Langmuir, 27, 2464–2477 (2011).
22. D. Darvill, A. Centeno, F. Xie, Phys. Chem. Chem. Phys., 15, 15709–15726 (2013).
23. Sh. Pawar, A. Bhattacharya, A. Nag, ACS Omega, 4, 5983–5990 (2019).
24. N. Zhdanova, E. Shirshin, E. Maksimov, I. Panchishin, V. Fadeev, Photochem. Photobiolog. Sci., 1, 1–32 (2013).
25. M. Losin, F. Toderas, S. Astilean, J. Mol. Struct., 924-926, 196–200 (2009).
26. G. Mandal, M. Bardhan, T. Ganguly, Colloids Surf. B: Biointer., 81, 178–184 (2010).
27. D. Gao, Y. Tian, S. Bi, Chen, Y. Spectrochem. Acta A, 62, 1203–1208 (2005).
28. D. Jang, M. Elsayed, Proc. Nat. Acad. Sci. USA, 86, 5815–5819 (1989).
29. M. Eftink, Biochem., 30, 8945–8953 (1991).
30. A. B. Ghisaidoobe, S. Chung. Int. J. Mol. Sci., 15, 22518–22538 (2014).
31. B. Khlebtsov, N. Khlebtsov, J. Quant. Spectr., 106, 154–169 (2007).
32. M. Fribel, A. Roggen, G. Muller, J. Biomed. Opt., 11, 034021 (2006).
33. M. E. Khosroshahi, Appl. Phys. B, 125, 229 (2019).
34. G. Baffou, R. Quidant, Laser Photon. Rev., 7, 171–187 (2013).
35. V. Pustovalov, V. Babenko, Laser Phys. Lett., 2, 84–89 (2005).
36. A. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, A. Kotov, Nanoscale Res. Lett., 1, 84–90 (2006).
37. M. Lacerda, A. Karim, J. Douglas, D. Pristinski, ACS Nano, 4, 365–379 (2010).
38. H. Moustaoui, J. Saber, I. Djeddi, Q. Liu, D. Movia, Nanoscale, 11, 3665–3673 (2019).
39. C. Rӧcker, M. Pӧtzl, W. Parak, U. Nienhaus, Nature Nanotech. Lett., 4, 577–580 (2009).
40. M. Cui, R. Liu, Zh. Deng, G. Ge, Nano Res., 7, 345–352 (2014).
Review
For citations:
Khosroshahi M.E., Woll-Morison V. Deep UV Led Dynamic Optical Imaging and Fluorescence Spectroscopy of the Protein Corona in a Plasmonic Solution and the Effect of Near-Infrared Laser Heating. Zhurnal Prikladnoii Spektroskopii. 2022;89(2):210-220.