

Phenolic Hydroxyl Group-Carbon Dots as a Fluorescent Probe for the Detection of Hydrogen Peroxide and Glucose in Milk
Abstract
In order to directly detect the concentration of glucose in milk, carbon dots (CDs) rich in phenolic hydroxyl groups were synthesized in one step as a fluorescent probe. We presented a new glucose oxidase (GOx)-mediated strategy to detect glucose, which allowed the quantitative analysis of hydrogen peroxide (H2O2) and glucose. Furthermore, it was possible to detect H2O2 and glucose directly in complex systems such as milk. The result in milk showed that the fluorescence of the CDs was quenched by H2O2 with the concentration range from 1 to 100 μM linearly, and the correlation coefficient was 0.977 with a detection limit of 0.175 μM. Similarly, a linear correlation was built between the fluorescence of the CDs and the concentration of glucose in the range from 10 to 100 μM with a correlation coefficient of 0.968 and a detection limit of 0.686 μM. The recovery rate was 97.30–101.05%, which showed high sensitivity in the detection of glucose in milk. As far as we know, this was the first time that CDs were used as a fluorescent probe to detect glucose in milk directly, which removed the step of pretreating milk and provided a supplement and extension for the detection of glucose in fluorescent spectroscopy.
About the Authors
Y. WeiChina
Wuxi
L. Li
China
Wuxi
Ch. Ma
China
Wuxi
Y. Wu
China
Wuxi
Ch. Zhu
China
Wuxi
H. Gao
China
Wuxi
J. Gu
China
Wuxi
Y. Xiong
China
Wuxi
X. Li
China
Wuxi
Z. Wang
China
Wuxi
G. Wang
China
Wuxi
S. Guo
China
Wuxi
G. Chen
China
Wuxi
References
1. A. Galant, R. Kaufman, J. Wilson, Food Chem., 188, 149–160 (2015).
2. S. Kiran, R. Misra, J. Biomed. Mater. Res. A, 103, 2888–2897 (2015).
3. C. F. Nascimento, P. M. Santos, E. R. Pereira-Filho, F. R. P. Rocha, Food Chem., 221, 1232–1244 (2017).
4. Y. Wu, Y. Zhang, Food & Chem. Toxic., 56, 325–335 (2013).
5. J. Ma, X. Hou, B. Zhang, Y. Wang, L. He, J. Pharm. Biomed. Anal., 91, 24–31 (2014).
6. S. Carballo, F. A. Zingarello, S. E. Maestre, J. L. Todolí, M. S. Prats, Int. J. Food Sci. Technol., 49, 146–152 (2014).
7. M. P. Gangola, S. Jaiswal, Y. P. Khedikar, R. N. Chibbar, Food Chem., 154, 127–133 (2014).
8. Q. Zhao, C. Zhou, Q. Yang, Z. Chu, N. Jia, Microchim. Acta, 186, 1–8 (2019).
9. C. Peng, C. Liu, Z. Xie, Anal. Methods, 7, 9749–9752 (2015).
10. S. Kiran, R. Misra, Mater. Technol., 30, 1753555714Y.000 (2015).
11. Y. Ngo, W. M. Choi, J. S. Chung, S. H. Hur, Sensors Act., B282, 36–44 (2019).
12. P. Shen, Y. Xia, Anal. Chem., 86, 5323–5329 (2014).
13. S. T. Yang, L. Cao, P. G. Luo, F. Lu, Y. P. Sun, J. Am. Chem. Soc., 131, 11308–11309 (2009).
14. A. Iqbal, K. Iqbal, L. Xu, B. Li, D. Gong, X. Liu, Y. Guo, W. Liu, W. Qin, H. Guo, Sensors Act. B: Chem., 255, 1130–1138 (2018).
15. R. Atchudan, T. N. J. I. Edison, K. R. Aseer, S. Perumal, N. Karthik, Y. R. Lee, Biosens. Bioelectron., 99, 303–311 (2018).
16. R. Wang, K. Q. Lu, Z. R. Tang, Y. J. Xu, J. Mater. Chem. A, 5, 3717–3734 (2017).
17. A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, S. K. Sahu, Sensors Act. B: Chem., 242, 679–686 (2017).
18. Y. Hou, H. Liu, Z. Li, H. Zhang, L. Wei, M. Yu, Anal. Methods, 12, 2835–2840 (2020).
19. F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z. Tan, A. Chen, Nat. Commun., 9, 2249 (2018).
20. F. Yuan, Z. Wang, X. Li, Y. Li, Z. Tan, L. Fan, S. Yang, Adv. Mater., 29, 1604436 (2017).
21. Y. Huan, Q. Fei, H. Shan, B. Wang, H. Xu, G. Feng, Analyst., 140, 1655–1661 (2015).
22. Y. Wu, Y. Gao, J. Du, Talanta, 197, 599–604 (2019).
23. Y. Nerthigan, A. K. Sharma, S. Pandey, K. H. Sharma, M. S. Khan, D. R. Hang, H. F. Wu, Microchim. Acta, 185, 65 (2018).
24. M. J. Cho, S. Y. Park, Sensors Act. B, 282, 719–729 (2019).
25. C.-S. Chu, M.-W. Hsieh, Z.-R. Su, Opt. Mater. Express, 6, 759–766 (2016).
26. M. Tang, B. Zhu, Y. Wang, H. Wu, Z. Su, Microchim. Acta, 186, 604–610 (2019).
27. J. Wei, L. Qiang, J. Ren, X. Ren, F. Tang, X. Meng, Anal. Methods, 6, 1922–1927 (2014).
28. W. Hou, X. Liu, Q. Lu, M. Liu, Y. Zhang, S. Yao, Colloids Surf. B: Biointerface, 162, 118–125 (2017).
29. J. L. Ma, B. C. Yin, X. Wu, B. C. Ye, Anal. Chem., 89, 1323–1328 (2017).
30. H. Wang, Y. Xie, S. Liu, S. Cong, Y. Song, X. Xu, M. Tan, J. Agric. Food Chem., 65, 7553–7559 (2017).
31. X. Shan, L. Chai, J. Ma, Z. Qian, J. Chen, F. Hui, Analyst., 139, 2322–2325 (2014).
32. Y. Long, X. Wang, D. Shen, H. Zheng, Talanta, 159, 122–126 (2016).
33. L. Monti, S. Negri, A. Meucci, A. Stroppa, A. Galli, G. Contarini, Food Chem., 220, 18–24 (2017).
34. Y. H. Zhang, W. Zhao, Y. Y. Duan, D. P. Cao, J. Fang, W. N. Chen, China Food Addit., 1, 137–140 (2016).
Review
For citations:
Wei Y., Li L., Ma Ch., Wu Y., Zhu Ch., Gao H., Gu J., Xiong Y., Li X., Wang Z., Wang G., Guo S., Chen G. Phenolic Hydroxyl Group-Carbon Dots as a Fluorescent Probe for the Detection of Hydrogen Peroxide and Glucose in Milk. Zhurnal Prikladnoii Spektroskopii. 2022;89(2):221-229.