Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Phenolic Hydroxyl Group-Carbon Dots as a Fluorescent Probe for the Detection of Hydrogen Peroxide and Glucose in Milk

Abstract

In order to directly detect the concentration of glucose in milk, carbon dots (CDs) rich in phenolic hydroxyl groups were synthesized in one step as a fluorescent probe. We presented a new glucose oxidase (GOx)-mediated strategy to detect glucose, which allowed the quantitative analysis of hydrogen peroxide (H2O2) and glucose. Furthermore, it was possible to detect H2O2 and glucose directly in complex systems such as milk. The result in milk showed that the fluorescence of the CDs was quenched by H2O2 with the concentration range from 1 to 100 μM linearly, and the correlation coefficient was 0.977 with a detection limit of 0.175 μM. Similarly, a linear correlation was built between the fluorescence of the CDs and the concentration of glucose in the range from 10 to 100 μM with a correlation coefficient of 0.968 and a detection limit of 0.686 μM. The recovery rate was 97.30–101.05%, which showed high sensitivity in the detection of glucose in milk. As far as we know, this was the first time that CDs were used as a fluorescent probe to detect glucose in milk directly, which removed the step of pretreating milk and provided a supplement and extension for the detection of glucose in fluorescent spectroscopy.

About the Authors

Y. Wei
School of Science at Jiangnan University; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology
China

 Wuxi 



L. Li
School of Science at Jiangnan University; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology
China

 Wuxi 



Ch. Ma
School of Science at Jiangnan University; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology
China

 Wuxi 



Y. Wu
School of Science at Jiangnan University; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology
China

 Wuxi 



Ch. Zhu
School of Science at Jiangnan University; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology
China

 Wuxi 



H. Gao
School of Science at Jiangnan University; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology
China

 Wuxi 



J. Gu
School of Science at Jiangnan University; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology
China

 Wuxi 



Y. Xiong
School of Science at Jiangnan University; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology
China

 Wuxi 



X. Li
School of Science at Jiangnan University; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology
China

 Wuxi 



Z. Wang
School of Science at Jiangnan University; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology
China

 Wuxi 



G. Wang
School of Science at Jiangnan University; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology
China

 Wuxi 



S. Guo
School of Science at Jiangnan University; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology
China

 Wuxi 



G. Chen
School of Science at Jiangnan University; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology
China

 Wuxi 



References

1. A. Galant, R. Kaufman, J. Wilson, Food Chem., 188, 149–160 (2015).

2. S. Kiran, R. Misra, J. Biomed. Mater. Res. A, 103, 2888–2897 (2015).

3. C. F. Nascimento, P. M. Santos, E. R. Pereira-Filho, F. R. P. Rocha, Food Chem., 221, 1232–1244 (2017).

4. Y. Wu, Y. Zhang, Food & Chem. Toxic., 56, 325–335 (2013).

5. J. Ma, X. Hou, B. Zhang, Y. Wang, L. He, J. Pharm. Biomed. Anal., 91, 24–31 (2014).

6. S. Carballo, F. A. Zingarello, S. E. Maestre, J. L. Todolí, M. S. Prats, Int. J. Food Sci. Technol., 49, 146–152 (2014).

7. M. P. Gangola, S. Jaiswal, Y. P. Khedikar, R. N. Chibbar, Food Chem., 154, 127–133 (2014).

8. Q. Zhao, C. Zhou, Q. Yang, Z. Chu, N. Jia, Microchim. Acta, 186, 1–8 (2019).

9. C. Peng, C. Liu, Z. Xie, Anal. Methods, 7, 9749–9752 (2015).

10. S. Kiran, R. Misra, Mater. Technol., 30, 1753555714Y.000 (2015).

11. Y. Ngo, W. M. Choi, J. S. Chung, S. H. Hur, Sensors Act., B282, 36–44 (2019).

12. P. Shen, Y. Xia, Anal. Chem., 86, 5323–5329 (2014).

13. S. T. Yang, L. Cao, P. G. Luo, F. Lu, Y. P. Sun, J. Am. Chem. Soc., 131, 11308–11309 (2009).

14. A. Iqbal, K. Iqbal, L. Xu, B. Li, D. Gong, X. Liu, Y. Guo, W. Liu, W. Qin, H. Guo, Sensors Act. B: Chem., 255, 1130–1138 (2018).

15. R. Atchudan, T. N. J. I. Edison, K. R. Aseer, S. Perumal, N. Karthik, Y. R. Lee, Biosens. Bioelectron., 99, 303–311 (2018).

16. R. Wang, K. Q. Lu, Z. R. Tang, Y. J. Xu, J. Mater. Chem. A, 5, 3717–3734 (2017).

17. A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, S. K. Sahu, Sensors Act. B: Chem., 242, 679–686 (2017).

18. Y. Hou, H. Liu, Z. Li, H. Zhang, L. Wei, M. Yu, Anal. Methods, 12, 2835–2840 (2020).

19. F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z. Tan, A. Chen, Nat. Commun., 9, 2249 (2018).

20. F. Yuan, Z. Wang, X. Li, Y. Li, Z. Tan, L. Fan, S. Yang, Adv. Mater., 29, 1604436 (2017).

21. Y. Huan, Q. Fei, H. Shan, B. Wang, H. Xu, G. Feng, Analyst., 140, 1655–1661 (2015).

22. Y. Wu, Y. Gao, J. Du, Talanta, 197, 599–604 (2019).

23. Y. Nerthigan, A. K. Sharma, S. Pandey, K. H. Sharma, M. S. Khan, D. R. Hang, H. F. Wu, Microchim. Acta, 185, 65 (2018).

24. M. J. Cho, S. Y. Park, Sensors Act. B, 282, 719–729 (2019).

25. C.-S. Chu, M.-W. Hsieh, Z.-R. Su, Opt. Mater. Express, 6, 759–766 (2016).

26. M. Tang, B. Zhu, Y. Wang, H. Wu, Z. Su, Microchim. Acta, 186, 604–610 (2019).

27. J. Wei, L. Qiang, J. Ren, X. Ren, F. Tang, X. Meng, Anal. Methods, 6, 1922–1927 (2014).

28. W. Hou, X. Liu, Q. Lu, M. Liu, Y. Zhang, S. Yao, Colloids Surf. B: Biointerface, 162, 118–125 (2017).

29. J. L. Ma, B. C. Yin, X. Wu, B. C. Ye, Anal. Chem., 89, 1323–1328 (2017).

30. H. Wang, Y. Xie, S. Liu, S. Cong, Y. Song, X. Xu, M. Tan, J. Agric. Food Chem., 65, 7553–7559 (2017).

31. X. Shan, L. Chai, J. Ma, Z. Qian, J. Chen, F. Hui, Analyst., 139, 2322–2325 (2014).

32. Y. Long, X. Wang, D. Shen, H. Zheng, Talanta, 159, 122–126 (2016).

33. L. Monti, S. Negri, A. Meucci, A. Stroppa, A. Galli, G. Contarini, Food Chem., 220, 18–24 (2017).

34. Y. H. Zhang, W. Zhao, Y. Y. Duan, D. P. Cao, J. Fang, W. N. Chen, China Food Addit., 1, 137–140 (2016).


Review

For citations:


Wei Y., Li L., Ma Ch., Wu Y., Zhu Ch., Gao H., Gu J., Xiong Y., Li X., Wang Z., Wang G., Guo S., Chen G. Phenolic Hydroxyl Group-Carbon Dots as a Fluorescent Probe for the Detection of Hydrogen Peroxide and Glucose in Milk. Zhurnal Prikladnoii Spektroskopii. 2022;89(2):221-229.

Views: 240


ISSN 0514-7506 (Print)