Features of the Spatial-Energy Profile Formation for the Visibility Zone of Active-Pulse Vision Systems on Inclined Paths
https://doi.org/10.47612/0514-7506-2022-89-2-260-268
Abstract
We numerically investigated the features of the formation of the space-energy profile of the visibility zone by active-pulse vision systems (APVS) on inclined paths with the diffuse reflection of vertically and horizontally oriented objects. We proposed to take into account the presence of a noise threshold in APVS and introduced the concept of signal contrast that permited to bring the results of the numerical modeling of the potential capabilities of APVS closer to those realized experimentally. It is shown that the position used earlier, when the length of the visibility zone was uniquely determined by the sum of the duration of the illumination and strobing pulses, is valid if the signal contrast is close to unity. With the considered typical parameters, the maximum observation range of vertical objects is approximately 3.8 times higher than the similar value for horizontal objects. When the APVS installation height increases, the signal value for vertical objects decreases monotonically, and for horizontal objects this dependence has a maximum. For the first time, a decrease in the length of the visibility zone for fixed durations of illumination and strobing pulses with an increasing delay distance is experimentally confirmed
About the Authors
B. F. KuntsevichBelarus
Minsk
D. V. Shabrov
Belarus
Minsk
References
1. И. Л. Гейхман, В. Г. Волков. Основы улучшения видимости в сложных условиях, Москва, ООО “Недра-Бизнес-центр” (1999)
2. В. Е. Карасик, В. М. Орлов. Лазерные системы видения, уч. пособие, Москва, МГТУ им. Н. Э. Баумана (2001)
3. В. Г. Волков, Б. А. Случак. Науч.-техн. журн. “Контент”, 15, № 3 (2016) 62—70
4. B. Goehler, P. Lutzmann. Opt. Engin., 56, N 3 (2017) 031203
5. M. Laurenzis, E. Bacher. Appl. Opt., 50, N 21 (2011) 3824—3828
6. X. Wang, Y. Li, J. Zhou. Appl. Opt., 52, N 30 (2013) 7399—7406
7. В. А. Горобец, В. В. Кабанов, В. П. Кабашников, Б. Ф. Кунцевич, Н. С. Метельская, Д. В. Шабров. Журн. прикл. спектр., 81, № 2 (2014) 283—291 [V. A. Gorobetz, V. V. Kabanov, V. P. Kabashnikov, B. F. Kuntsevich, N. S. Metelskaya, D. V. Shabrov. J. Appl. Spectr., 81 (2014) 279—287]
8. В. А. Горобец, В. В. Кабанов, В. П. Кабашников, Б. Ф. Кунцевич, Н. С. Метельская, Д. В. Шабров. Журн. прикл. спектр., 82, № 1 (2015) 68—75 [V. A. Gorobetz, V. V. Kabanov, V. P. Kabashnikov, B. F. Kuntsevich, N. S. Metelskaya, D. V. Shabrov. J. Appl. Spectr., 82 (2015) 63—71]
9. В. А. Горобец, В. В. Кабанов, В. П. Кабашников, Б. Ф. Кунцевич, Н. С. Метельская, Д. В. Шабров. Журн. прикл. спектр., 83, № 1 (2016) 105—112 [V. A. Gorobetz, V. V. Kabanov, V. P. Kabashnikov, B. F. Kuntsevich, N. S. Metelskaya, D. V. Shabrov. J. Appl. Spectr., 83 (2016) 93—99]
10. Академик А. А. Лебедев. Избранные труды, под ред. П. П. Феофилова, Ленинград, Наука (1974)
11. D. V. Alant’ev, A. V. Golitsyn, N. A. Seĭfi. J. Opt. Technol., 85, N 6 (2018) 355—358
12. А. А. Golitsyn, N. A. Seyfi. Appl. Phys., N 1 (2018) 78—83
13. Q. Chen, A. Mathai, X. Xu, X. Wang. Photonics, 6 (2019) 123
14. S. Kruapech, J. Widjaja. Opt. Laser Technol., 42 (2010) 749—754
15. Б. Ф. Кунцевич, В. П. Кабашников, Д. В. Шабров. Журн. прикл. спектр., 88, № 5 (2021) 782—790 [B. F. Kuntsevich, V. P. Kabashnikov, D. V. Shabrov. J. Appl. Spectr., 88 (2021) 1012—1019]
16. Б. Ф. Кунцевич, В. П. Кабашников. Журн. прикл. спектр., 87, № 6 (2020) 984—989 [B. F. Kuntsevich, V. P. Kabashnikov. J. Appl. Spectr., 87 (2020) 1112—1116]
17. O. Steinvall, H. Olsson, G. Bolander. Proc. SPIE, 3707 (1999) 432—448
Review
For citations:
Kuntsevich B.F., Shabrov D.V. Features of the Spatial-Energy Profile Formation for the Visibility Zone of Active-Pulse Vision Systems on Inclined Paths. Zhurnal Prikladnoii Spektroskopii. 2022;89(2):260-268. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-2-260-268