Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Terahertz Spectroscopy and Density Functional Theory Analysis of the Molecular Interactions in Crystalline Orotic Acid Monohydrate

Abstract

The terahertz (THz) absorption spectrum of orotic acid monohydrate in the crystalline phase was experimentally obtained by using THz time-domain spectroscopy and computationally simulated by using density functional theory. Four distinct peaks were observed within the range of 12–128 cm1, and were computationally reproduced by simulations using the Perdew–Burke–Ernzerhof functional. A comparison of the experimental and calculated data indicated that the measured peaks mostly originated from intermolecular forces in which the interactions between orotic acid molecules dominated. In addition, the feature located at 110.2 cm1 was attributed to the interactions between orotic acid and water molecules. These findings demonstrate that THz spectroscopy can be used to monitor molecular dehydration during industrial production.

About the Authors

Zh. Zheng
School of Electronic Engineering at Xi’an University of Posts & Telecommunication
China

 Xi’an 



F. Zeng
School of Electronic Engineering at Xi’an University of Posts & Telecommunication
China

 Xi’an 



Y. Zhi
School of Electronic Engineering at Xi’an University of Posts & Telecommunication
China

 Xi’an 



L. Zhu
School of Electronic Engineering at Xi’an University of Posts & Telecommunication
China

 Xi’an 



References

1. Y. Ueno, K. Ajito, Anal. Sci., 24, 185–192 (2008).

2. L. Xie, Y. Yao, Y. Ying, Spectrosc. Rev., 49, 448–461 (2014).

3. M. Walther, B. M. Fischer, P. U. Jepsen, Chem. Phys., 288, 261–268 (2003).

4. Z. P. Zheng, W. H. Fan, H. Yan, Chem. Phys. Lett., 525-526, 140–143 (2012)

5. Z. X. Li, J. Zhou, X. S. Guo, B. B. Ji, W. Zhou, D. H. Li, J. Appl. Spectrosc., 85, 840–844 (2018).

6. Y. Ma, H. Huang, S. Hao, K. Qiu, H. Gao, L. Gao, W. Tang, Z. Zhang, Z. Zheng, Sci. Rep., 9, 9265 (2019).

7. E. M. Kleist, C. L. Koch Dandolo, J. P. Guillet, P. Mounaix, T. M. Korter, J. Phys. Chem. A, 123, 1225–1232 (2019)

8. M. D. King, W. Ouellette, T. M. Korter, J. Phys. Chem., 115, 9467–9478 (2011).

9. M. Takahashi, N. Okamura, X. Fan, H. Shirakawa, H. Minamide, Phys. Chem. A, 121, 2558–2564 (2017).

10. P. U. Jepsen, S. J. Clark, Chem. Phys. Lett., 442, 275–280 (2007).

11. G. Portalone, Acta Crystallogr. E, 64, 0656 (2008).

12. J. Dong, Z. Zhang, H. Zheng, M. Sun, Nanophotonics, 4, 472–490 (2015).

13. B. Lei, J. Wang, J. Li, J. Tang, Y. Wang, W. Zhao, Y. Duan, Opt. Express, 27, 20541–20557 (2019).

14. A. Hernanz, F. Billes, I. Bratu, R. Navarro, Biopolymer, 57, 187–198 (2000).

15. Z. P. Zheng, J. M. Gong, J. Terahertz Sci. Electron. Inform. Techn., 17, 425–438 (2019).

16. T. Chen, X. Wang, P. Han, W. Sun, S. Feng, J. Ye, Y. Xu, Y. Zhang, J. Phys. D: Appl. Phys., 52, 455101 (2019).

17. Q. Wu, X. C. Zhang, Appl. Phys. Lett., 67, 3523 (1995).

18. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr., 220, 567–570 (2005).

19. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B, 46, 6671–6687 (1992).

20. B. Zhang, S. Li, C. Wang, T. Zou, T. Pan, J. Zhang, Z. Xu, G. Ren, H. Zhao, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 190, 40–46 (2018).


Review

For citations:


Zheng Zh., Zeng F., Zhi Y., Zhu L. Terahertz Spectroscopy and Density Functional Theory Analysis of the Molecular Interactions in Crystalline Orotic Acid Monohydrate. Zhurnal Prikladnoii Spektroskopii. 2022;89(2):269-274.

Views: 195


ISSN 0514-7506 (Print)