Terahertz Spectroscopy and Density Functional Theory Analysis of the Molecular Interactions in Crystalline Orotic Acid Monohydrate
Abstract
The terahertz (THz) absorption spectrum of orotic acid monohydrate in the crystalline phase was experimentally obtained by using THz time-domain spectroscopy and computationally simulated by using density functional theory. Four distinct peaks were observed within the range of 12–128 cm–1, and were computationally reproduced by simulations using the Perdew–Burke–Ernzerhof functional. A comparison of the experimental and calculated data indicated that the measured peaks mostly originated from intermolecular forces in which the interactions between orotic acid molecules dominated. In addition, the feature located at 110.2 cm–1 was attributed to the interactions between orotic acid and water molecules. These findings demonstrate that THz spectroscopy can be used to monitor molecular dehydration during industrial production.
About the Authors
Zh. ZhengChina
Xi’an
F. Zeng
China
Xi’an
Y. Zhi
China
Xi’an
L. Zhu
China
Xi’an
References
1. Y. Ueno, K. Ajito, Anal. Sci., 24, 185–192 (2008).
2. L. Xie, Y. Yao, Y. Ying, Spectrosc. Rev., 49, 448–461 (2014).
3. M. Walther, B. M. Fischer, P. U. Jepsen, Chem. Phys., 288, 261–268 (2003).
4. Z. P. Zheng, W. H. Fan, H. Yan, Chem. Phys. Lett., 525-526, 140–143 (2012)
5. Z. X. Li, J. Zhou, X. S. Guo, B. B. Ji, W. Zhou, D. H. Li, J. Appl. Spectrosc., 85, 840–844 (2018).
6. Y. Ma, H. Huang, S. Hao, K. Qiu, H. Gao, L. Gao, W. Tang, Z. Zhang, Z. Zheng, Sci. Rep., 9, 9265 (2019).
7. E. M. Kleist, C. L. Koch Dandolo, J. P. Guillet, P. Mounaix, T. M. Korter, J. Phys. Chem. A, 123, 1225–1232 (2019)
8. M. D. King, W. Ouellette, T. M. Korter, J. Phys. Chem., 115, 9467–9478 (2011).
9. M. Takahashi, N. Okamura, X. Fan, H. Shirakawa, H. Minamide, Phys. Chem. A, 121, 2558–2564 (2017).
10. P. U. Jepsen, S. J. Clark, Chem. Phys. Lett., 442, 275–280 (2007).
11. G. Portalone, Acta Crystallogr. E, 64, 0656 (2008).
12. J. Dong, Z. Zhang, H. Zheng, M. Sun, Nanophotonics, 4, 472–490 (2015).
13. B. Lei, J. Wang, J. Li, J. Tang, Y. Wang, W. Zhao, Y. Duan, Opt. Express, 27, 20541–20557 (2019).
14. A. Hernanz, F. Billes, I. Bratu, R. Navarro, Biopolymer, 57, 187–198 (2000).
15. Z. P. Zheng, J. M. Gong, J. Terahertz Sci. Electron. Inform. Techn., 17, 425–438 (2019).
16. T. Chen, X. Wang, P. Han, W. Sun, S. Feng, J. Ye, Y. Xu, Y. Zhang, J. Phys. D: Appl. Phys., 52, 455101 (2019).
17. Q. Wu, X. C. Zhang, Appl. Phys. Lett., 67, 3523 (1995).
18. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr., 220, 567–570 (2005).
19. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B, 46, 6671–6687 (1992).
20. B. Zhang, S. Li, C. Wang, T. Zou, T. Pan, J. Zhang, Z. Xu, G. Ren, H. Zhao, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 190, 40–46 (2018).
Review
For citations:
Zheng Zh., Zeng F., Zhi Y., Zhu L. Terahertz Spectroscopy and Density Functional Theory Analysis of the Molecular Interactions in Crystalline Orotic Acid Monohydrate. Zhurnal Prikladnoii Spektroskopii. 2022;89(2):269-274.