Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Detection and Classification of Vehicles in Ultra-High Resolutions Images Using Neural Networks

https://doi.org/10.47612/0514-7506-2022-89-2-275-282

Abstract

The paper proposes a deep neural network architecture based on the integration of the convolutional neural network Faster R-CNN with the Feature Pyramid Network module. Based on this approach, an algorithm for detecting and classifying vehicles in images and a corresponding model have been developed. A cross-platform environment ML.NET was used to train the proposed model. The results of comparing the effectiveness of the proposed approach and convolutional neural networks YOLO v4 and Faster R-CNN are presented. The improvement of the accuracy of detection and localization of different types of vehicles in ultra-high resolutions images is shown. Examples of processing ultra-high resolutions remote sensing images and appropriate recommendations are given.

About the Authors

Ch. Chen
School of Information Science and Technology at Zhejiang Shuren University; International Science and Technology Cooperation Base of Zhejiang Province: Remote Sensing Image Processing and Application
China

Hangzhou



A. A. Мinald
Belarusian State University
Belarus

Minsk 



R. P. Bohush
Polotsk State University
Belarus

Novopolotsk 



G. Ma
EarthView Image Inc.
China

Huzhou 



Y. Weichen
EarthView Image Inc.
China

Huzhou 



S. V. Аblameyko
Belarusian State University; United Institute for Informatics Problems, National Academy of Sciences of Belarus
Belarus

Minsk 



References

1. Yuntao Li, Zhihuan Wu, Lei Li, Daoning Yang, Hongfeng Pang. J. Appl. Remote Sens., 15, N 2 (2021) 026505, doi: 10.1117/1.JRS.15.026505

2. Q. Tan, J. Ling, J. Hu, X. Qin, J. Hu. IEEE Access, 8 (2020) 153394—153402, doi: 10.1109/ACCESS.2020.3017894

3. Y. Koga, H. Miyazaki, R. Shibasaki. Remote Sens., 12 (2020) 575, doi: 10.3390/rs12030575

4. L. Yongxi, T. Javidi. Proc. 53rd Annual Allerton Conf. Communication, Control, and Computing (2015) 1091—1098, doi: 10.1109/ALLERTON.2015.7447130

5. W. Shao, W. Yang, G. Liu, J. Liu. Proc. IEEE Int. Geoscience and Remote Sensing Symposium (2012) 4379—4382, doi: 10.1109/IGARSS.2012.6350403

6. D. Vorobjov, I. Zakharova, R. Bohush, S. Ablameyko. Advances in Neural Networks-ISNN2018.

7. Lecture Notes in Computer Science, 10878 (2018) 503—510, doi: 10.1007/978-3-319-92537-0

8. И. Н. Пугачев, Г. Я. Маркелов, В. С. Тормозов. Вестн. ТОГУ, 45, № 2 (2017) 13—20

9. Xungen Li, Feifei Men, Shuaishuai Lv, Xiao Jiang, Mian Pan, Qi Ma, Haibin Yu. ISPRS Int. J. GeoInformation, 10 (2021) 549, doi: 10.3390/ijgi10080549

10. A. Froidevaux, A. Julier, A. Lifschitz, M. Pham, R. Dambreville, S. Lefèvre, P. Lassalle, T. Huynh. IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Sept. (2020) 256—259, ff10.1109/IGARSS39084.2020.9323827ff. ffhal-03213855

11. R. Girshick, J. Donahue, T. Darrell, J. Malik. IEEE Transact. Pattern Analysis and Machine Intelligence, 38 (2016) 142—158

12. R. Girshick. Proc. IEEE Int. Conf. Computer Vision. Santiago, Chile (2015) 1440—1448

13. S. Ren, K. He, R. Girshick, J. Sun. IEEE Transact. Pattern Analysis and Machine Intelligence, 39 (2015) 1137—1149

14. D. R. Lucio, R. Laroca, L. A. Zanlorensi, G. Moreira, D. Menotti. Region Detection Using Coarse Annotations, doi: 10.1109/SIBGRAPI.2019.00032, arXiv:1908.00069

15. T.-Yi Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie. Feature Pyramid Networks for Object Detection arXiv:1612.03144v2 [cs.CV] 19 Apr 2017

16. https://github.com/jekhor/aerial-cars-dataset

17. M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, A. Zisserman. Int. J. Computer Vision, 88 (2010) 303—338, doi: 10.1007/s11263-009-0275-4

18. https://arxiv.org/pdf/2004.10934.pdf


Review

For citations:


Chen Ch., Мinald A.A., Bohush R.P., Ma G., Weichen Y., Аblameyko S.V. Detection and Classification of Vehicles in Ultra-High Resolutions Images Using Neural Networks. Zhurnal Prikladnoii Spektroskopii. 2022;89(2):275-282. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-2-275-282

Views: 416


ISSN 0514-7506 (Print)