Detection and Classification of Vehicles in Ultra-High Resolutions Images Using Neural Networks
https://doi.org/10.47612/0514-7506-2022-89-2-275-282
Abstract
The paper proposes a deep neural network architecture based on the integration of the convolutional neural network Faster R-CNN with the Feature Pyramid Network module. Based on this approach, an algorithm for detecting and classifying vehicles in images and a corresponding model have been developed. A cross-platform environment ML.NET was used to train the proposed model. The results of comparing the effectiveness of the proposed approach and convolutional neural networks YOLO v4 and Faster R-CNN are presented. The improvement of the accuracy of detection and localization of different types of vehicles in ultra-high resolutions images is shown. Examples of processing ultra-high resolutions remote sensing images and appropriate recommendations are given.
About the Authors
Ch. ChenChina
Hangzhou
A. A. Мinald
Belarus
Minsk
R. P. Bohush
Belarus
Novopolotsk
G. Ma
China
Huzhou
Y. Weichen
China
Huzhou
S. V. Аblameyko
Belarus
Minsk
References
1. Yuntao Li, Zhihuan Wu, Lei Li, Daoning Yang, Hongfeng Pang. J. Appl. Remote Sens., 15, N 2 (2021) 026505, doi: 10.1117/1.JRS.15.026505
2. Q. Tan, J. Ling, J. Hu, X. Qin, J. Hu. IEEE Access, 8 (2020) 153394—153402, doi: 10.1109/ACCESS.2020.3017894
3. Y. Koga, H. Miyazaki, R. Shibasaki. Remote Sens., 12 (2020) 575, doi: 10.3390/rs12030575
4. L. Yongxi, T. Javidi. Proc. 53rd Annual Allerton Conf. Communication, Control, and Computing (2015) 1091—1098, doi: 10.1109/ALLERTON.2015.7447130
5. W. Shao, W. Yang, G. Liu, J. Liu. Proc. IEEE Int. Geoscience and Remote Sensing Symposium (2012) 4379—4382, doi: 10.1109/IGARSS.2012.6350403
6. D. Vorobjov, I. Zakharova, R. Bohush, S. Ablameyko. Advances in Neural Networks-ISNN2018.
7. Lecture Notes in Computer Science, 10878 (2018) 503—510, doi: 10.1007/978-3-319-92537-0
8. И. Н. Пугачев, Г. Я. Маркелов, В. С. Тормозов. Вестн. ТОГУ, 45, № 2 (2017) 13—20
9. Xungen Li, Feifei Men, Shuaishuai Lv, Xiao Jiang, Mian Pan, Qi Ma, Haibin Yu. ISPRS Int. J. GeoInformation, 10 (2021) 549, doi: 10.3390/ijgi10080549
10. A. Froidevaux, A. Julier, A. Lifschitz, M. Pham, R. Dambreville, S. Lefèvre, P. Lassalle, T. Huynh. IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Sept. (2020) 256—259, ff10.1109/IGARSS39084.2020.9323827ff. ffhal-03213855
11. R. Girshick, J. Donahue, T. Darrell, J. Malik. IEEE Transact. Pattern Analysis and Machine Intelligence, 38 (2016) 142—158
12. R. Girshick. Proc. IEEE Int. Conf. Computer Vision. Santiago, Chile (2015) 1440—1448
13. S. Ren, K. He, R. Girshick, J. Sun. IEEE Transact. Pattern Analysis and Machine Intelligence, 39 (2015) 1137—1149
14. D. R. Lucio, R. Laroca, L. A. Zanlorensi, G. Moreira, D. Menotti. Region Detection Using Coarse Annotations, doi: 10.1109/SIBGRAPI.2019.00032, arXiv:1908.00069
15. T.-Yi Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie. Feature Pyramid Networks for Object Detection arXiv:1612.03144v2 [cs.CV] 19 Apr 2017
16. https://github.com/jekhor/aerial-cars-dataset
17. M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, A. Zisserman. Int. J. Computer Vision, 88 (2010) 303—338, doi: 10.1007/s11263-009-0275-4
18. https://arxiv.org/pdf/2004.10934.pdf
Review
For citations:
Chen Ch., Мinald A.A., Bohush R.P., Ma G., Weichen Y., Аblameyko S.V. Detection and Classification of Vehicles in Ultra-High Resolutions Images Using Neural Networks. Zhurnal Prikladnoii Spektroskopii. 2022;89(2):275-282. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-2-275-282