Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Density Functional Theory Analysis of Ground State and Evaluation of Transition Probability Parameters for Carbon MonoFluoride Molecule

Abstract

In view of astrophysical application, the ground state molecular parameters such as bond length, dipole moment, rotational constant, harmonic frequency, IR intensity, vibrational temperature of the astrophysically significant diatomic molecule of carbon mono-fluoride (CF) were derived using B3LYP hybrid density functional theory with three basis sets of 3-21G, 6-31G, and 6-311G. The computed data were collectively compared with the values reported in the literature. It was found that the vibrational temperature obtained using the density functional theory approach resembles the favorable temperature for the formation of the CF molecule in an interstellar medium. The transition probability parameters, namely Franck–Condon factors and r-centroids were evaluated for A–X, B–X, and D–X band systems of the CF molecule, using a more reliable numerical integration procedure. The molecular parameters of ground state obtained in the present study was compared with the reported values for better justification. The results of Franck–Condon factors and r-centroids were also discussed in view of astrophysical application.

About the Authors

G. Shanmugapriya
Department of Physics, VVV College for Women
India

Virudhunagar



B. Karthikeyan
Department of Physics, Mepco Schlenk Engineering College
India

Sivakasi



R. Vettumperumal
Department of Physics, Fodhdhoo School
Maldives

Fodhdhoo, Noonu Atoll



N. Rajamanickam
Physics Research Centre, VHNSN College
India

Virudhunagar



References

1. Yongliang Hao, et al., J. Chem. Phys., 151, 034302 (2019).

2. John R. Daniel, Chen Wang, Kayla Rodriguez, Boerge Hemmerling, Taylor N. Lewis, Christopher Bardeen, Alexander Teplukhin, Brian K. Kendrick, Phys. Rev. A, Accepted 23 June 2021 (2021).

3. Amal Moussa, Nayla El-Kork, Mahmoud Korek, New J. Phys., 23, 013017 (2021).

4. Xiangyue Liu, Gerard Meijer, Jesús Pérez-Ríos, RSC Adv., Issue 24, Issue in Progress (2021), doi: 10.1039/D1RA02061G.

5. B. Barbuy, J. Trevisan, A. de Almeida, Publ. Astron. Soc. Australia, 35, e046(1–9) (2018), doi: 10.1017/pasa.2018.33.

6. M. G. Tarallo, G. Z. Iwata, T. Zelevinsky, Phys. Rev. A, 93, 032509 (2016).

7. L. E. Berg, K. Ekvall, A. Hishikawa, S. Kelly, Phys. Scr., 55, 269–272 (1997).

8. S. Schlemmer, H. Mutschke, T. Giesen, C. Jäger, Laboratory Astrochemistry: from Molecules Through Nanoparticles to Grains, John Wiley & Sons Publication (2014).

9. Anna-Maree Syme, Laura K. McKemmish, Res. Notes AAS, 4, 139 (2020).

10. V. A. Sre´ckovi´c, L. M. Ignjatovi´c, M. S. Dimitrijevi´c, Molecules, 26, 151 (2021).

11. E. B. Andrews, R. F. Barrow, Nature (London), 165, 890 (1950).

12. E. B. Andrews, R. F. Barrow, Proc. Phys. Sot. London Sec. A, 64, 481–492 (1951).

13. T. H. Dunning, Jr., J. Mol. Spectrosc., 75, 297–317 (1979).

14. W. P. White, M. Russel, C. Pitzer, W. Mathews, T. H. Dunning, Jr., J. Mol. Spectrosc., 75, 318–326 (1979).

15. T. L. Porter, D. E. Mann, N. E. Aquista, J. Mol. Spectrosc., 16, 228–263 (1965).

16. I. D. Petsalakis, J. Chem. Phys., 110, 10730–10737 (1999).

17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT (2004).

18. D. R. Bates, Proc. R. Soc. A, 196, 217–250 (1949).

19. R. W. Nicholls, W. R. Jarmain, Proc. Roy. Phys. Soc., 69, 253–264 (1956).

20. P. M. Morse, Phys. Rev., 34, 57–64 (1929).

21. B. Karthikeyan, Studies on Molecular Species Identified in Solar and Allied Spectra by Spectroscopic Techniques, Ph.D. Thesis, MKU (2008).

22. K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure: IV Costants of Diatomic Molecules, New York. Van Nostrand Reinhold Co. (1979).

23. B. de B. Darwent, National Standard Reference Data Series, National Bureau of Standards, No. 31, Washington, DC (1970).

24. R. L. David, Handbook of Chemistry and Physics, 85th ed., CRC Press, USA (2004).

25. M. A. Gondal, W. Rohrbech, W. Urban, J. Mol. Spectrosc., 100, 290–302 (1983).

26. C. A. Mahon, A. Stampanoni, J. Luque, J. Mol. Spectrosc., 183, 18–24 (1997).

27. O. Launilla, J. Jonsson, J. Mol. Spectrosc., 168, 483–493 (1994).

28. B. Karthikeyan, S. P. Bagare, N. Rajamanickam, V. Raja, Astropart. Phys., 31, 6–12 (2009).

29. B. Karthikeyan, N. Rajamanickam, S. P. Bagare, Solar Phys., 264, 279–285 (2010).

30. G. Shanmugapriya, B. Karthikeyan, K. Balachandrakumar, N. Rajamanickam, S. P. Bagare, Solar Phys., 290, 1569–1579 (2015).


Review

For citations:


Shanmugapriya G., Karthikeyan B., Vettumperumal R., Rajamanickam N. Density Functional Theory Analysis of Ground State and Evaluation of Transition Probability Parameters for Carbon MonoFluoride Molecule. Zhurnal Prikladnoii Spektroskopii. 2022;89(2):283.

Views: 202


ISSN 0514-7506 (Print)