Structural, Optical, and Photoluminescence Studies of Ti-Doped ZnO Nanopowders by a Simple Solution Method
Abstract
A titanium-doped ZnO nanopowder was prepared with different wt% ratios using a simple solution technique. Structural and spectroscopic characterization was done for the prepared samples. The X-ray powder diffraction pattern showed that the prepared nanopowder was in the nanoscale range, the crystallite size of the ZnO nanopowder being 41.67 nm. By increasing the dopant concentration in the host lattice, the crystalline size was decreased to 20.84 nm. The morphological surface stated that the formatting of ZnO was marginally impacted by Ti-doping. The optical properties and identification of assimilation groups were determined by UV-Vis spectroscopy. The photoluminescence spectrum indicated that the outflow groups were in the UV and red regions. Electron paramagnetic resonance displayed a reverberation signal at g = 1.35. The distinction in the magnetization values within the range from 0.04 to 0.02 was 1.092 emu/g, demonstrating an even expansion of Ti in ZnO.
About the Authors
M. S. KumarIndia
Vijayawada
R. V. S. S. N. Ravikumar
India
Nagarjuna Nagar, Guntur
M. C. Rao
India
Vijayawada
References
1. S. A. Bidier, M. R. Hashim, IEEE 6th Int. Conf. on Photonics (2016).
2. S. A. Bidier, M. R. Hashim, Ahmad M. Al-Diabat, M. Bououdina, Phys. E, 88, 169–171 (2017).
3. R. K. Chava, M. Kang, J. Alloys Compd., 692, 67–76 (2017).
4. Cheng-Liang Hsu, Yi-Dian Gao, You-Syuan Chen, Ting-Jen Hsueh, Sens. Act. B, 192, 550–557 (2014).
5. R. Sridhar, C. Manoharan, S. Ramalingam, S. Dhanapandian, M. Bououdina, Spectrochim. Acta A, 120, 297–303 (2014).
6. S. A. Bidier, M. R. Hashim, M. Bououdina. J. Mater. Sci: Mater. Electron., 28, 11178–11185 (2017).
7. Zhihua Yong, Tao Liu, Tomoya Uruga, Hajime Tanida, Dongchen Qi, Andrivo Rusydi, Andrew T. S. Wee, Mater., 3, No. 6, 3642–3653 (2010).
8. Liang-Wen Ji, Shi-Ming Peng, Jun-Sheng Wu, Wei-Shun Shih, Cheng-Zhi Wu, I. Tseng Tang, J. Phys. Chem. Solids, 70, No. 10, 1359–1362 (2009).
9. R. Nandi, S. S. Major, Appl. Surf. Sci., 399, 305–312 (2017).
10. W. Yu, T. Liu, S. Cao, C. Wang, C. Chen, J. Solid State Chem., 239, 131–138 (2016).
11. Y. Liu, W. Gao, J. Alloys Compd., 629, 84–91 (2015).
12. Y. Kumar, A. K. Rana, P. Bhojane, M. Pusty, V. Bagwe, Mater. Res. Express, 2, No. 10, 105017 (2015).
13. S. Kanmani, N. Rajamanickam, K. Ramachandran, Org. Electron., 15, No. 10, 2302–2310 (2014). –12000 –8000 –4000 0 4000 8000 12000
14. D. V. Sathish, Ch. Rama Krishna, Ch. Venkata Reddy, T. Raghavendra Rao, P. S. Rao, R. V. S. S. N. Ravikumar, J. Mol. Struct., 1034, 57–61 (2013).
15. D. V. Sathish, Ch. Rama Krishna, Ch. Venkata Reddy, U. S. Udayachandran Thampy, R. V. S. S. N. Ravikumar, Phys. Scr., 86, 035708 (2012).
16. P. Shokeen, A. Jain, A. Kapoor, Opt. Mater., 67, 32–37 (2017).
17. K. Qi, B. Cheng, J. Yu, W. Ho, J. Alloys Compd., 727, 792–820 (2017).
18. N. Kumaresan, K. Ramamurthi, R. Babu, K. Sethuraman, S. M. Babu, Appl. Surf. Sci., 418, 138–146 (2017).
19. S. Radhika, J. Thomas, J. Environ. Chem. Eng., 5, 4239–4250 (2017).
20. S. J. Pearton, F. Ren, Int. Mater. Rev., 59, 61–83 (2014).
21. Y.-P. Xu Yun, Jin Lu, Ma Xiang-Yang, Yang De-Ren, Acta Phys. Sin., 62, 84207 (2013).
22. Y.-C. Shen, C.-H. Yang, S.-W. Chen, S.-H. Wu, T.-L. Yang, J.-J. Huang, Biosens. Bioelectron., 54, 306–310 (2014).
23. M. Hjiri, L. El Mir, S. G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Sens. Act. B: Chem., 196, 413–420 (2014).
24. V. S. Khomchenko, N. N. Roshchina, L. V. Zavyalova, V. V. Strelchuk, G. S. Svechnikov, N. P. Tatyanenko, V. L. Gromashevskii, O. S. Litvin, E. A. Avramenko, B. A. Snopok, Tech. Phys., 59, 93–101 (2014).
25. M. Yuste, R. E. Galindo, O. M. Sacristan, I. Minguez-Bacho, R. Sonia, M. Hernandez-Velez, O. Sanchez, Mater. Res. Express, 1, 045028 (2014).
26. W. Zhang, J. Zhao, Z. Liu, Z. Liu, Appl. Surf. Sci., 284, 49–52 (2013).
27. M. Venkatesan, C. B. Fitzgerald, J. M. D. Coey, Nature, 450, 630 (2004).
28. A. Chakrabarty, C. H. Patterson, Phys. Rev. B: Condens. Mater. Mater. Phys., 84, 054441 (2011).
29. W. Liu, W. Li, Z. Hu, Z. Tang, X. Tang, J. Appl. Phys., 110, 013901 (2011).
30. S. Shit, T. Kamilya, P. K. Samanta, Mater. Lett., 118, 123–125 (2014).
31. M. V. Kuznetsov, Y. G. Morozov, O. V. Belousova, D. Ortega, Inorg. Mater., 50, 369–378 (2014).
32. S. S. Xiao, L. Zhao, Y. H. Liu, J. S. Lian, Appl. Surf. Sci., 283, 781–787 (2013).
33. K.S. Babu, A. R. Reddy, K. V. Reddy, Mater. Res. Bull., 49, 537–543 (2014).
34. G. N. Narayanan, R. S. Ganesh, A. Karthigeyan, Thin Solid Films, 598, 39–45 (2016).
35. K. H. Kim, et al., Superlattices Microstruct., 91, 188–192 (2016).
36. A. Ghosh, N. G. Deshpande, Y. G. Gudage, R. A. Joshi, A. A. Sagade, D. M. Phase, Ramphal Sharma, J. Alloys Compd., 469, No. 1-2, 56–60 (2009).
37. T. Akilan, N. Srinivasan, R. Saravanan, Mater. Sci. Semicond. Proc., 30, 381–387 (2015).
38. H. Morcos, U. Ozgur, Zinc Oxide: Fundamentals, Materials and Device Technology, Wiley-VCH (2009).
39. E. N. Budilova, V. A. Nikitenko, S. M. Kokin, Bull. Russ. Acad. Sci. Phys., 79, 160–164 (2015).
40. V. A. Nikitenko, S. M. Kokin, S. G. Stouhin Anomalies, J. Appl. Spectrosc., 86, 567–571 (2019).
41. V. A. Nikitenko, J. Appl. Spectrosc., 57, 783–798 (1992).
42. S. Benramache, et al., J. Semicond., 35, No. 4, 042001 (2014).
43. S. Deshpande, et al., Appl. Phys. Lett., 87, No. 13, 133113 (2005).
Review
For citations:
Kumar M.S., Ravikumar R.V., Rao M.C. Structural, Optical, and Photoluminescence Studies of Ti-Doped ZnO Nanopowders by a Simple Solution Method. Zhurnal Prikladnoii Spektroskopii. 2022;89(2):284.