Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Gadolinium Oxide Dissolution Kinetics in Chloride GdCl3-KCl Melt According to Raman Spectroscopy Data

https://doi.org/10.47612/0514-7506-2022-89-3-341-347

Abstract

Using in situ Raman spectroscopy, the chemical mechanism of gadolinium oxide dissolution in the GdCl3-KCl melt is established. The changes in the normalized intensities of the vibrational bands is used to determine the kinetic parameters of the ongoing chemical reaction. It is established that the concentration of the reagent — gadolinium oxide — decreases with time according to an exponential law, the order of the reaction with respect to Gd2O3 is the first. It is shown that the introduction of gadolinium oxide into the melt in an amount exceeding its solubility leads to the formation of a solid phase of gadolinium oxychloride GdOCl.

About the Author

I. D. Zakiryanova
Institute of High-Temperature Electrochemistry, Ural Branch of Russian Academy of Sciences
Russian Federation

Ekaterinburg



References

1. C. K. Gupta, N. Krishnamurthy. Extractive Metallurgy of Rare Earths, CRC PRESS (2005) 31—32

2. D. Bernard, A. Santamarina. Annals of Nuclear Energy, 87 (2016) 21—33, doi: 10.1016/j.anucene.2015.02.034

3. R. Klersy, A. Schürenkämper, O. Simoni, K. H. Schnader. Irradiation Behaviour of UO2 Fuel Rods Contaning Gadolinium Oxide as Consumable Poison. Commission of the European Communities, Joint Nuclear Research Centre – Ispra Establishment (1972) 7—8

4. D. Campolina, E. F. Faria, A. A. С. Santos, V. V. A. Silva, M. P. V. Franco, M. S. Dias, J. R. L. Mattos. Ann. Nucl. Energy, 118 (2018) 375—380, https://www.researchgate.net/publication/326744375

5. R. R. Zairov, N. А. Shamsutdinova, А. Т. Gubaidullin, А. R. Mustafina, А. N. Fattakhova, А. V. Pyataev, А. F. Abdullin, А. V. Gerasimov. Russ. Chem. Bull., 65 (2016) 1325—1331, doi: 10.1007/s11172-016-1456-2

6. A. H. Daane. Metallothermic Preparation of Rare Earth Metals, Willey (1961) 102

7. N. Ji, T. Zhu, H. Peng, F. Jiang, W. Huang, Y. Gong. J. Electrochem. Soc., 168 (2021) 082512, doi: 10.1149/1945-7111/ac1f59

8. K. Liu, Y. L. Liu, L. Y. Yuan, X. L. Zhao, Z. F. Chai, W. Q. Shi. Electrochim. Acta, 109 (2013) 732—740, doi: 10.1016/j.electacta.2013.07.084

9. I. D. Zakir’yanova, E. V. Nikolaeva, I. V. Korzun. Mat. Sci. Forum, 989 (2020) 91—96, doi: 10.4028/www.scientific.net/MSF.989.91

10. I. V. Korzun, E. V. Nikolaeva, I. D Zakir’yanova. J. Therm. Anal. Calorim., 144 (2020) 1343—1349, doi: 10.1007/s10973-020-09558-2

11. E. Stefanidaki, G. M. Photiadis, C. G. Kontoyannis, A. F. Vik, T. Østvold. J. Chem. Soc., Dalton Trans. (2002) 2302—2307, doi: 10.1039/B111563B

12. H. Mediaas, G. Photiadis, G. Papatheodorou, J. Vindstad, T. Østvold. Acta Chem. Scaninavica, 51 (1997) 8—12, doi: 10.3891/acta.chem.scand.51-0008

13. D. O. Zakiryanov, I. D. Zakiryanova, N. K. Tkachev. J. Mol. Liquids, 301 (2020) 112396, doi: 10.1016/j.molliq.2019.112396

14. I. D. Zakiryanova, D. O. Zakiryanov. J. Mol. Liquids, 318 (2020) 114054, doi: 10.1016/j.molliq.2020.114054

15. V. A. Volkovich, A. A. Ryzhov, A. B. Ivanov, A. V. Shchetinskiy, D. S. Maltsev. J. Electrochem. Soc., 168 (2021) 046513, doi: 10.1149/1945-7111/abf5a5

16. И. Д. Закирьянова. Журн. прикл. спектр., 88, № 4 (2021) 557—563 [I. D. Zakir’yanova. J. Appl. Spectr., 88 (2021) 755—760], doi: 10.1007/s10812-021-01236-x

17. Г. E. Ревзин. В сб.: Методы получения химических реактивов и препаратов, Москва, ИРЕА (1967) 124—129

18. I. V. Korzun, I. D. Zakir’yanova, E. V. Nikolaeva. Russ. Metallurgy (Metally), 8 (2018) 722—727, doi: 10.1134/S0036029518080104

19. H. J. Seifert. J. Therm. Anal. Calorim., 82 (2005) 575—580, doi: 10.1007/s10973-005-6946-7

20. I. Barin. Thermochemical Data of Pure Substances, VCH Verlags Gesellschaf (1989), doi: 10.1002/ange.19901020738

21. H. J. Seifert, J. Sandrock, G. Z. Thiel. Аnorg. Allg. Chem., 598-599 (1991) 310—306, doi: 10.1002/zaac.19915980128

22. Y. U. Jinqiu, C. I. Lei , H. E. Huaqiang, Y. A. N. Shihong, H. U. Yunsheng, W. U. Hao. J. Rare Earths, 32 (2014) 1—4, doi: 10.1016/S1002-0721(14)60025-9

23. А. Chrissanthopoulos, G. N. Papatheodorou. Phys. Chem. Chem. Phys., 2 (2000) 3709—3714, doi: 10.1039/B004227G

24. A. Matsuoka, K. Fukushima, K. Igarashi, Y. Iwadate, J. Mochinaga. J. Chem. Soc. Jpn., 5 (1993) 471—474, doi: 10.1246/nikkashi.1993.471

25. E. B. Nikolaeva, I. D. Zakir’yanova, A. L. Bovet, T. V. Sosnovtseva. Russ. Metallurgy (Metally), 8 (2020) 817—820, doi: 10.1134/S003602952008011X

26. Y. Hase, P. O. Dunstan, M. L. A. Temperini. Spectrochim. Acta A, 37 (1981) 597—599, doi: 10.1016/0584-8539(81)80055-4

27. L. J. Basile, J. R. Ferraro, D. Gronert. J. Inorg. Nucl. Chem., 33 (1971) 1047—1053, doi: 10.1016/0022-1902(71)80173-2

28. И. Брандмюллер, Г. Мозер. Введение в спектроскопию комбинационного рассеяния света, Москва, Мир (1964) 465—486

29. E. V. Nikolaeva, I. D. Zakiryanova, A. L. Bovet, I. V. Korzun. J. Electrochem. Soc., 168 (2021) 016502, doi: 10.1149/1945-7111/abd64a

30. Y. J. Cho, H. C. Yang, H. C. Eun, E. H. Kim, I. T. Kim. J. Nucl. Sci. Techn., 43 (2006) 1280—1286, doi: 10.1080/18811248.2006.9711221


Review

For citations:


Zakiryanova I.D. Gadolinium Oxide Dissolution Kinetics in Chloride GdCl3-KCl Melt According to Raman Spectroscopy Data. Zhurnal Prikladnoii Spektroskopii. 2022;89(3):341-347. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-3-341-347

Views: 504


ISSN 0514-7506 (Print)