Gadolinium Oxide Dissolution Kinetics in Chloride GdCl3-KCl Melt According to Raman Spectroscopy Data
https://doi.org/10.47612/0514-7506-2022-89-3-341-347
Abstract
Using in situ Raman spectroscopy, the chemical mechanism of gadolinium oxide dissolution in the GdCl3-KCl melt is established. The changes in the normalized intensities of the vibrational bands is used to determine the kinetic parameters of the ongoing chemical reaction. It is established that the concentration of the reagent — gadolinium oxide — decreases with time according to an exponential law, the order of the reaction with respect to Gd2O3 is the first. It is shown that the introduction of gadolinium oxide into the melt in an amount exceeding its solubility leads to the formation of a solid phase of gadolinium oxychloride GdOCl.
About the Author
I. D. ZakiryanovaRussian Federation
Ekaterinburg
References
1. C. K. Gupta, N. Krishnamurthy. Extractive Metallurgy of Rare Earths, CRC PRESS (2005) 31—32
2. D. Bernard, A. Santamarina. Annals of Nuclear Energy, 87 (2016) 21—33, doi: 10.1016/j.anucene.2015.02.034
3. R. Klersy, A. Schürenkämper, O. Simoni, K. H. Schnader. Irradiation Behaviour of UO2 Fuel Rods Contaning Gadolinium Oxide as Consumable Poison. Commission of the European Communities, Joint Nuclear Research Centre – Ispra Establishment (1972) 7—8
4. D. Campolina, E. F. Faria, A. A. С. Santos, V. V. A. Silva, M. P. V. Franco, M. S. Dias, J. R. L. Mattos. Ann. Nucl. Energy, 118 (2018) 375—380, https://www.researchgate.net/publication/326744375
5. R. R. Zairov, N. А. Shamsutdinova, А. Т. Gubaidullin, А. R. Mustafina, А. N. Fattakhova, А. V. Pyataev, А. F. Abdullin, А. V. Gerasimov. Russ. Chem. Bull., 65 (2016) 1325—1331, doi: 10.1007/s11172-016-1456-2
6. A. H. Daane. Metallothermic Preparation of Rare Earth Metals, Willey (1961) 102
7. N. Ji, T. Zhu, H. Peng, F. Jiang, W. Huang, Y. Gong. J. Electrochem. Soc., 168 (2021) 082512, doi: 10.1149/1945-7111/ac1f59
8. K. Liu, Y. L. Liu, L. Y. Yuan, X. L. Zhao, Z. F. Chai, W. Q. Shi. Electrochim. Acta, 109 (2013) 732—740, doi: 10.1016/j.electacta.2013.07.084
9. I. D. Zakir’yanova, E. V. Nikolaeva, I. V. Korzun. Mat. Sci. Forum, 989 (2020) 91—96, doi: 10.4028/www.scientific.net/MSF.989.91
10. I. V. Korzun, E. V. Nikolaeva, I. D Zakir’yanova. J. Therm. Anal. Calorim., 144 (2020) 1343—1349, doi: 10.1007/s10973-020-09558-2
11. E. Stefanidaki, G. M. Photiadis, C. G. Kontoyannis, A. F. Vik, T. Østvold. J. Chem. Soc., Dalton Trans. (2002) 2302—2307, doi: 10.1039/B111563B
12. H. Mediaas, G. Photiadis, G. Papatheodorou, J. Vindstad, T. Østvold. Acta Chem. Scaninavica, 51 (1997) 8—12, doi: 10.3891/acta.chem.scand.51-0008
13. D. O. Zakiryanov, I. D. Zakiryanova, N. K. Tkachev. J. Mol. Liquids, 301 (2020) 112396, doi: 10.1016/j.molliq.2019.112396
14. I. D. Zakiryanova, D. O. Zakiryanov. J. Mol. Liquids, 318 (2020) 114054, doi: 10.1016/j.molliq.2020.114054
15. V. A. Volkovich, A. A. Ryzhov, A. B. Ivanov, A. V. Shchetinskiy, D. S. Maltsev. J. Electrochem. Soc., 168 (2021) 046513, doi: 10.1149/1945-7111/abf5a5
16. И. Д. Закирьянова. Журн. прикл. спектр., 88, № 4 (2021) 557—563 [I. D. Zakir’yanova. J. Appl. Spectr., 88 (2021) 755—760], doi: 10.1007/s10812-021-01236-x
17. Г. E. Ревзин. В сб.: Методы получения химических реактивов и препаратов, Москва, ИРЕА (1967) 124—129
18. I. V. Korzun, I. D. Zakir’yanova, E. V. Nikolaeva. Russ. Metallurgy (Metally), 8 (2018) 722—727, doi: 10.1134/S0036029518080104
19. H. J. Seifert. J. Therm. Anal. Calorim., 82 (2005) 575—580, doi: 10.1007/s10973-005-6946-7
20. I. Barin. Thermochemical Data of Pure Substances, VCH Verlags Gesellschaf (1989), doi: 10.1002/ange.19901020738
21. H. J. Seifert, J. Sandrock, G. Z. Thiel. Аnorg. Allg. Chem., 598-599 (1991) 310—306, doi: 10.1002/zaac.19915980128
22. Y. U. Jinqiu, C. I. Lei , H. E. Huaqiang, Y. A. N. Shihong, H. U. Yunsheng, W. U. Hao. J. Rare Earths, 32 (2014) 1—4, doi: 10.1016/S1002-0721(14)60025-9
23. А. Chrissanthopoulos, G. N. Papatheodorou. Phys. Chem. Chem. Phys., 2 (2000) 3709—3714, doi: 10.1039/B004227G
24. A. Matsuoka, K. Fukushima, K. Igarashi, Y. Iwadate, J. Mochinaga. J. Chem. Soc. Jpn., 5 (1993) 471—474, doi: 10.1246/nikkashi.1993.471
25. E. B. Nikolaeva, I. D. Zakir’yanova, A. L. Bovet, T. V. Sosnovtseva. Russ. Metallurgy (Metally), 8 (2020) 817—820, doi: 10.1134/S003602952008011X
26. Y. Hase, P. O. Dunstan, M. L. A. Temperini. Spectrochim. Acta A, 37 (1981) 597—599, doi: 10.1016/0584-8539(81)80055-4
27. L. J. Basile, J. R. Ferraro, D. Gronert. J. Inorg. Nucl. Chem., 33 (1971) 1047—1053, doi: 10.1016/0022-1902(71)80173-2
28. И. Брандмюллер, Г. Мозер. Введение в спектроскопию комбинационного рассеяния света, Москва, Мир (1964) 465—486
29. E. V. Nikolaeva, I. D. Zakiryanova, A. L. Bovet, I. V. Korzun. J. Electrochem. Soc., 168 (2021) 016502, doi: 10.1149/1945-7111/abd64a
30. Y. J. Cho, H. C. Yang, H. C. Eun, E. H. Kim, I. T. Kim. J. Nucl. Sci. Techn., 43 (2006) 1280—1286, doi: 10.1080/18811248.2006.9711221
Review
For citations:
Zakiryanova I.D. Gadolinium Oxide Dissolution Kinetics in Chloride GdCl3-KCl Melt According to Raman Spectroscopy Data. Zhurnal Prikladnoii Spektroskopii. 2022;89(3):341-347. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-3-341-347