Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Calculation of the Förster Resonance Energy Transfer Parameters in Nanospheres Containing CdSe/ZnS Quantum Dots and Diarylethene

https://doi.org/10.47612/0514-7506-2022-89-3-360-368

Abstract

An analysis of theoretical model studies of photochromic systems with reversible fluorescence modulation based on polymer nanospheres containing CdSe/ZnS semiconductor quantum dots (QDs), and photochromic diarylethene DAE2 molecules is presented. Based on the known relations of the theory of Förster resonance energy transfer (FRET), a model is constructed for the efficiency of modulation of QD fluorescence E(r) caused by photochromic transformations of DAE2 molecules located near them due to the FRET mechanism. The boundaries of the optimal values of the parameters that affect the efficiency of the fluorescence modulation due to FRET are determined. The efficiency of FRET E(r) is given for some boundary values of the influencing factors. It is shown that E(r) ~ 0.7 can be achieved at distances between donors and acceptors r = 4.5 nm, if one QD with a fluorescence quantum yield Q = 0.4 accounts for at least n = 16 DAE2 molecules (or at Q = 0.8 and n = 8), as well as at distances r = 3 nm (Q = 0.1 and n = 6; Q = 0.4 and n = 2; Q = 0.8 and n = 1). The results obtained can be used to optimize the structure and technology for the synthesis of photochromic luminescent nanospheres.

About the Authors

P. V. Karpach
Yanka Kupala Grodno State University
Belarus

Grodno



S. A. Maskevich
Belarusian State University, ISEI Belarusian State University
Belarus

Minsk



G. T. Vasilyuk
Yanka Kupala Grodno State University
Belarus

Grodno



V. V. Britikov
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Minsk



S. A. Usanov
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Minsk



A. A. Khuzin
Institute of Petrochemistry and Catalysis of the Russian Academy of Sciences
Russian Federation

Ufa



M. V. Artemiev
Research Institute of Physical and Chemical Problems of the Belarusian State University
Belarus

Minsk



References

1. J. Zhang, Q. Zou, H. Tian. Adv. Mater., 25 (2013) 378—399

2. R. Klajn, J. F. Stoddart, B. A. Grzybowski. Chem. Soc. Rev., 39 (2010) 2203—2237

3. J. Cusido, E. Deniz, F. M. Raymo. Eur. J. Org. Chem., 13 (2009) 2031—2045

4. Y. Hasegawa, T. Nakagawa, T. Kawai. Coord. Chem. Rev., 254 (2010) 2643—2651

5. F. M. Raymo, M. Tomasulo. J. Phys. Chem. A, 109 (2005) 7343—7352

6. Molecular switches, Ed. B. L. Feringa, Weinheim, Wiley-VCH (2001) 37—60

7. S. A. Díaz, G. O. Menéndez, M. H. Etchehon, L. Giordano, T. M. Jovin, E. A. Jares-Erijman. ACS Nano, 5 (2011) 2795—2805

8. I. Yildiz, E. Deniz, F. M. Raymo. Chem. Soc. Rev., 38 (2009) 1859—1867

9. I. Yildiz, M. Tomasulo, F. M. Raymo. J. Mater. Chem., 18 (2008) 5577—5584

10. M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake. Chem. Rev., 114 (2014) 12174—12277

11. V. A. Barachevsky, O. V. Venidiktova, O. I. Kobeleva, A. M. Gorelik, A. O. Ayt, M. M. Krayushkin, A. R. Tameev, G. I. Sigeikin, M. A. Saveliev, G. T. Vasiluyk. IEEENANO-2015: Nanotechnology, Proc. IEEE (2015) 358—361

12. P. V. Karpach, A. A. Scherbovich, G. T. Vasilyuk, V. I. Stsiapura, A. O. Ayt, V. A. Barachevsky, А. R. Tuktarov, A. A. Khuzin, S. A. Maskevich. J. Fluoresc., 29, N 6 (2019) 1311—1320

13. V. A. Barachevsky, O. I. Kobeleva, A. O. Ayt, A. M. Gorelik, T. M. Valova, M. M. Krayushkin, V. N. Yarovenko, K. S. Levchenko, V. V. Kiyko, G. T. Vasilyuk. Opt. Mater., 35 (2013) 1805—1809

14. В. А. Барачевский, О. И. Кобелева, О. В. Венидиктова, А. О. Айт, Г. Т. Василюк, С. А. Маскевич, М. М. Краюшкин. Кристаллография, 64, № 4 (2019) 820—824 [V. A. Barachevsky, O. I. Kobeleva, O. V. Venidiktova, A. O. Ayt, G. T. Vasilyuk, S. A. Maskevich, M. M. Krayushkin. Crystallogr. Rep., 64, N 5 (2019) 823—827]

15. V. A. Barachevsky, O. V. Venidiktova, T. M. Valova, A. M. Gorelik, R. Vasiliev, A. Khuzin, A. R. Tuktarov, P. V. Karpach, V. I. Stsiapura, G. T. Vasilyuk, S. A. Maskevich. Photochem. Photobiol. Sci., 18 (2019) 2661—2665

16. A. A. Scherbovich, S. A. Maskevich, P. V. Karpach, G. T. Vasilyuk, V. I. Stsiapura, O. V. Venidiktova, A. O. Ayt, V. A. Barachevsky, A. A. Khuzin, А. R. Tuktarov, M. Artemyev. J. Phys. Chem. С, 124 (2020) 27064—27070

17. A. Fedosyuk, A. Radchanka, A. Antanovich, A. Prudnikau, M. A. Kvach, V. Shmanai, M. Artemyev. Langmuir, 32, N 8 (2016) 1955—1961

18. A. Sukhanova, K. Even-Desrumeaux, P. Chames, D. Baty, M. Artemyev, V. Oleinikov, I. Nabiev. Nat. Protoc. Protoc. Exch. (2012), doi: 10.1038/protex.2012.042

19. B. Wieb VanDerMeer. Methods Appl. Fluoresc., 8, N 3 (2020) 030401

20. S. S. Vogel, T. A. Nguyen, B. W. van der Meer, P. S. Blank. PLoS One, 7, N 11 (2012) e49593

21. M. Hardzei, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, I. Nabiev. Chem. Phys. Chem., 13 (2012) 330—335


Review

For citations:


Karpach P.V., Maskevich S.A., Vasilyuk G.T., Britikov V.V., Usanov S.A., Khuzin A.A., Artemiev M.V. Calculation of the Förster Resonance Energy Transfer Parameters in Nanospheres Containing CdSe/ZnS Quantum Dots and Diarylethene. Zhurnal Prikladnoii Spektroskopii. 2022;89(3):360-368. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-3-360-368

Views: 407


ISSN 0514-7506 (Print)