Calculation of the Förster Resonance Energy Transfer Parameters in Nanospheres Containing CdSe/ZnS Quantum Dots and Diarylethene
https://doi.org/10.47612/0514-7506-2022-89-3-360-368
Abstract
An analysis of theoretical model studies of photochromic systems with reversible fluorescence modulation based on polymer nanospheres containing CdSe/ZnS semiconductor quantum dots (QDs), and photochromic diarylethene DAE2 molecules is presented. Based on the known relations of the theory of Förster resonance energy transfer (FRET), a model is constructed for the efficiency of modulation of QD fluorescence E(r) caused by photochromic transformations of DAE2 molecules located near them due to the FRET mechanism. The boundaries of the optimal values of the parameters that affect the efficiency of the fluorescence modulation due to FRET are determined. The efficiency of FRET E(r) is given for some boundary values of the influencing factors. It is shown that E(r) ~ 0.7 can be achieved at distances between donors and acceptors r = 4.5 nm, if one QD with a fluorescence quantum yield Q = 0.4 accounts for at least n = 16 DAE2 molecules (or at Q = 0.8 and n = 8), as well as at distances r = 3 nm (Q = 0.1 and n = 6; Q = 0.4 and n = 2; Q = 0.8 and n = 1). The results obtained can be used to optimize the structure and technology for the synthesis of photochromic luminescent nanospheres.
About the Authors
P. V. KarpachBelarus
Grodno
S. A. Maskevich
Belarus
Minsk
G. T. Vasilyuk
Belarus
Grodno
V. V. Britikov
Belarus
Minsk
S. A. Usanov
Belarus
Minsk
A. A. Khuzin
Russian Federation
Ufa
M. V. Artemiev
Belarus
Minsk
References
1. J. Zhang, Q. Zou, H. Tian. Adv. Mater., 25 (2013) 378—399
2. R. Klajn, J. F. Stoddart, B. A. Grzybowski. Chem. Soc. Rev., 39 (2010) 2203—2237
3. J. Cusido, E. Deniz, F. M. Raymo. Eur. J. Org. Chem., 13 (2009) 2031—2045
4. Y. Hasegawa, T. Nakagawa, T. Kawai. Coord. Chem. Rev., 254 (2010) 2643—2651
5. F. M. Raymo, M. Tomasulo. J. Phys. Chem. A, 109 (2005) 7343—7352
6. Molecular switches, Ed. B. L. Feringa, Weinheim, Wiley-VCH (2001) 37—60
7. S. A. Díaz, G. O. Menéndez, M. H. Etchehon, L. Giordano, T. M. Jovin, E. A. Jares-Erijman. ACS Nano, 5 (2011) 2795—2805
8. I. Yildiz, E. Deniz, F. M. Raymo. Chem. Soc. Rev., 38 (2009) 1859—1867
9. I. Yildiz, M. Tomasulo, F. M. Raymo. J. Mater. Chem., 18 (2008) 5577—5584
10. M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake. Chem. Rev., 114 (2014) 12174—12277
11. V. A. Barachevsky, O. V. Venidiktova, O. I. Kobeleva, A. M. Gorelik, A. O. Ayt, M. M. Krayushkin, A. R. Tameev, G. I. Sigeikin, M. A. Saveliev, G. T. Vasiluyk. IEEENANO-2015: Nanotechnology, Proc. IEEE (2015) 358—361
12. P. V. Karpach, A. A. Scherbovich, G. T. Vasilyuk, V. I. Stsiapura, A. O. Ayt, V. A. Barachevsky, А. R. Tuktarov, A. A. Khuzin, S. A. Maskevich. J. Fluoresc., 29, N 6 (2019) 1311—1320
13. V. A. Barachevsky, O. I. Kobeleva, A. O. Ayt, A. M. Gorelik, T. M. Valova, M. M. Krayushkin, V. N. Yarovenko, K. S. Levchenko, V. V. Kiyko, G. T. Vasilyuk. Opt. Mater., 35 (2013) 1805—1809
14. В. А. Барачевский, О. И. Кобелева, О. В. Венидиктова, А. О. Айт, Г. Т. Василюк, С. А. Маскевич, М. М. Краюшкин. Кристаллография, 64, № 4 (2019) 820—824 [V. A. Barachevsky, O. I. Kobeleva, O. V. Venidiktova, A. O. Ayt, G. T. Vasilyuk, S. A. Maskevich, M. M. Krayushkin. Crystallogr. Rep., 64, N 5 (2019) 823—827]
15. V. A. Barachevsky, O. V. Venidiktova, T. M. Valova, A. M. Gorelik, R. Vasiliev, A. Khuzin, A. R. Tuktarov, P. V. Karpach, V. I. Stsiapura, G. T. Vasilyuk, S. A. Maskevich. Photochem. Photobiol. Sci., 18 (2019) 2661—2665
16. A. A. Scherbovich, S. A. Maskevich, P. V. Karpach, G. T. Vasilyuk, V. I. Stsiapura, O. V. Venidiktova, A. O. Ayt, V. A. Barachevsky, A. A. Khuzin, А. R. Tuktarov, M. Artemyev. J. Phys. Chem. С, 124 (2020) 27064—27070
17. A. Fedosyuk, A. Radchanka, A. Antanovich, A. Prudnikau, M. A. Kvach, V. Shmanai, M. Artemyev. Langmuir, 32, N 8 (2016) 1955—1961
18. A. Sukhanova, K. Even-Desrumeaux, P. Chames, D. Baty, M. Artemyev, V. Oleinikov, I. Nabiev. Nat. Protoc. Protoc. Exch. (2012), doi: 10.1038/protex.2012.042
19. B. Wieb VanDerMeer. Methods Appl. Fluoresc., 8, N 3 (2020) 030401
20. S. S. Vogel, T. A. Nguyen, B. W. van der Meer, P. S. Blank. PLoS One, 7, N 11 (2012) e49593
21. M. Hardzei, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, I. Nabiev. Chem. Phys. Chem., 13 (2012) 330—335
Review
For citations:
Karpach P.V., Maskevich S.A., Vasilyuk G.T., Britikov V.V., Usanov S.A., Khuzin A.A., Artemiev M.V. Calculation of the Förster Resonance Energy Transfer Parameters in Nanospheres Containing CdSe/ZnS Quantum Dots and Diarylethene. Zhurnal Prikladnoii Spektroskopii. 2022;89(3):360-368. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-3-360-368