Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Sparsity-Based Thresholding Criterion for Spurious Echo Removal and Denoising Magnetic Resonance Spectra Using Rational-Dilation Wavelet Transform

Abstract

Biological signals such as magnetic resonance spectroscopy (MRS) signals are susceptible to noise and artifacts. The information obtained from these signals is significant in analyzing human physiological conditions. MRS, a non-ionizing and non-invasive method, presents an effective alternative method to biopsy for diagnosis and analysis from generated signals that are rich in chemical information of the tissues in the region of interest. A persisting problem of this method is the presence of noise and artifacts causing misinterpretation and subsequent incorrect diagnosis. The present research proposes a denoising strategy using the rational-dilation wavelet transform-based signal decomposition and a thresholding criterion designed using the Lpq norm-based sparsity measure of the decomposition levels of the signal. Compared with the standard state-of-the-art methods, which are effective in denoising but can cause distortion of the signal at discontinuities, the proposed method can remove artifacts such as spurious echoes present in the magnetic resonance signals and improve the signal-to-noise ratio without distorting the signal.

About the Authors

Ch. Sagar
School of Biomedical Engineering at Indian Institute of Technology (BHU)
India

Varanasi, Uttar Pradesh



D. Kumar Singh
Department of Oncology, Apex Super-Speciality Hospital and Post Graduate Institute
India

Varanasi, Uttar Pradesh



N. Sharma
School of Biomedical Engineering at Indian Institute of Technology (BHU)
India

Varanasi, Uttar Pradesh



References

1. C. E. Mountford, P. Stanwell, A. Lin, S. Ramadan, B. Ross, Chem. Rev., 110, No. 5, 3060–3086 (2010), doi: 10.1021/cr900250y.

2. A. Lin, T. Tran, S. Bluml, S. Merugumala, H.-J. Liao, B. Ross, Sem. Neurol., 32, No. 4, 432–453 (2013), doi: 10.1055/s-0032-1331814.

3. S. P. Kyathanahally, A. Döring, R. Kreis, Mag. Res. Med., 80, No. 3, 851–863 (2018), doi: 10.1002/mrm.27096.

4. I. Daubechies, Ten Lectures on Wavelets, Philadelphia, Pa: Society for Industrial and Applied Mathematics (1992).

5. S. G. Mallat, IEEE Trans. Acoust., Speech, Signal Proc., 37, No. 12, 2091–2110 (1989), doi: 10.1109/29.45554.

6. F. Ehrentreich, Anal. Bioanal. Chem., 372, No. 1, 115–121 (2002), doi: 10.1007/s00216-001-1119-4.

7. J. Karvanen, A. Cichocki, Measuring Sparseness of Noisy Signals, 4th Int. Symposium Independent Component Analysis and Blind Signal Separation, 125–130 (2003).

8. I. Bayram, I. W. Selesnick, IEEE Trans. Signal Process, 57, No. 8, 2957–2972 (2009), doi: 10.1109/TSP.2009.2020756.

9. C. Ding, D. Zhou, X. He, H. Zha, Proc. Int. Conf. Machine Learning – ICML’06, Pittsburgh, Pennsylvania, 281–288 (2006), doi: 10.1145/1143844.1143880.

10. M. Khosravy, N. Nitta, N. Gupta, N. Patel, N. Babaguchi, Compressive Sensing in Healthcare, Elsevier, 43–63 (2020).

11. W. Wu et al., J. Chem. Inf. Model., 46, No. 2, 863–875 (2006), doi: 10.1021/ci050316w.

12. G. F. Giskeødegård, et al., Anal. Chim. Acta, 683, No. 1, 1–11 (2010), doi: 10.1016/j.aca.2010.09.026.

13. L. Chen, Z. Weng, L. Goh, M. Garland, J. Mag. Res., 158, No. 1-2, 164–168 (2002), doi: 10.1016/S1090-7807(02)00069-1.

14. F. Jiru, Europ. J. Radiology, 67, No. 2, 202–217 (2008), doi: 10.1016/j.ejrad.2008.03.005.

15. U. Klose, Mag. Res. Med., 14, No. 1, 26–30 (1990), doi: 10.1002/mrm.1910140104.

16. W. W. F. Pijnappel, A. van den Boogaart, R. de Beer, D. van Ormondt, J. Mag. Res., 97, No. 1, 122–134 (1992), doi: 10.1016/0022-2364(92)90241-X.

17. T. Laudadio, N. Mastronardi, L. Vanhamme, P. Van Hecke, S. Van Huffel, J. Mag. Res., 157, No. 2, 292–297 (2002), doi: 10.1006/jmre.2002.2593.

18. D. Stefan, et al., Meas. Sci. Technol., 20, No. 10, 104035 (2009), doi: 10.1088/0957-0233/20/10/104035.

19. D. L. Donoho, IEEE Trans. Inform. Theory, 41, No. 3, 613–627 (1995), doi: 10.1109/18.382009.

20. I. M. Johnstone, B. W. Silverman, J. Roy. Statist. Soc. Ser. B (Methodological), 59, No. 2, 319–351 (1997).

21. D. L. Donoho, I. M. Johnstone, Biometrika, 81, 425–455 (1994), doi: 10.1093/biomet/81.3.425.

22. Jun Jiang, Jian Guo, Weihua Fan, Qingwei Chen, Proc. 8th World Congress on Intelligent Control and Automation, Jinan, China, Jul. 2010, 2894–2898 (2010), doi: 10.1109/WCICA.2010.5554856.

23. G. Y. Chen, T. D. Bui, IEEE Signal Proc. Lett., 10, No. 7, 211–214 (2003), doi: 10.1109/LSP.2003.811586.

24. R. Hussein, K. B. Shaban, A. H. El-Hag, Int. Conf. Communications, Signal Processing, and their Applications (ICCSPA’15), Sharjah, United Arab Emirates, 1–5 (2015), doi: 10.1109/ICCSPA.2015.7081289.

25. C. Huimin, Z. Ruimei, H. Yanli, Phys. Proc., 33, 1354–1359 (2012), doi: 10.1016/j.phpro.2012.05.222.

26. Y. Ding, I. W. Selesnick, IEEE Signal Proc. Lett., 22, No. 9, 1364–1368 (2015), doi: 10.1109/LSP.2015.2406314.

27. G. Chen, W. Xie, Y. Zhao, Fourth Int. Conf. Intelligent Control and Inform. Proc. (ICICIP), Beijing, China, Jun. 2013, 570–574 (2013), doi: 10.1109/ICICIP.2013.6568140.

28. L. Sendur, I. W. Selesnick, IEEE Trans. Signal Proc., 50, No. 11, 2744–2756 (2002), doi: 10.1109/TSP.2002.804091.

29. Y. Liu, X. Cheng, Fourth Int. Conf. Fuzzy Systems and Knowledge Discovery (FSKD 2007), Haikou, China, 32–35 (2007), doi: 10.1109/FSKD.2007.90.

30. I. K. Fodor, J. Electron. Imaging, 12, No. 1, 151 (2003), doi: 10.1117/1.1525793.

31. C. He, J. Xing, J. Li, Q. Yang, R. Wang, Math. Prob. Eng., 2015, 1–9 (2015), doi: 10.1155/2015/280251.

32. T. Hui, C. Lin, L. Zengli, C. Zaiyu, Wavelet Image Denoising Based on the New Threshold Function, 4 (2013).

33. S. Jangjit, M. Ketcham, Engineering J., 21, No. 7, 141–155 (2017), doi: 10.4186/ej.2017.21.7.141.

34. L. Jing-yi, L. Hong, Y. Dong, Z. Yan-sheng, Math. Prob. Eng., 2016, 1–8 (2016), doi: 10.1155/2016/3195492.

35. S. A. A. Karim, M. T. Ismail, M. K. Hasan, J. Sulaiman, H. Sakidin, Denoising Using New Thresholding Method, Johor Bahru, Malaysia, 0300342 (2016), doi: 10.1063/1.4954570.

36. S. G. Chang, Bin Yu, M. Vetterli, IEEE Trans. Image Process., 9, No. 9, 1532–1546 (2000), doi: 10.1109/83.862633.

37. M. Srivastava, C. L. Anderson, J. H. Freed, IEEE Access, 4, 3862–3877 (2016), doi: 10.1109/ACCESS.2016.2587581.

38. Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, IEEE Trans. Image Process., 13, No. 4, 600–612 (2004), doi: 10.1109/TIP.2003.819861.

39. I. W. Selesnick, IEEE Trans. Signal Process., 52, No. 5, 1304–1314 (2004), doi: 10.1109/TSP.2004.826174.

40. T. S. Sharan, S. Sharma, N. Sharma, J Appl. Spectr., 88, 117–124 (2021), doi: 10.1007/s10812-021-01149-9.


Review

For citations:


Sagar Ch., Kumar Singh D., Sharma N. Sparsity-Based Thresholding Criterion for Spurious Echo Removal and Denoising Magnetic Resonance Spectra Using Rational-Dilation Wavelet Transform. Zhurnal Prikladnoii Spektroskopii. 2022;89(3):430.

Views: 153


ISSN 0514-7506 (Print)