Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Accuracy Improvement of Geographical Indication of Rice by Laser-Induced Breakdown Spectroscopy Using Support Vector Machine with Multi-Spectral Line

Abstract

Mislabeling and adulteration are problems in the food industry. Considering the frequent occurrence of safety affairs in agricultural products, it is necessary to establish a traceability system for the quality and safety of agricultural products. The aim of the present study was to establish a rapid detection method for distinguishing rice samples from ten different products of geographical indication in China using laser-induced breakdown spectroscopy (LIBS). A support vector machine (SVM) is used to calculate the recognition rate of single spectral lines and multi-spectral lines of the geographic origins of rice. The adjusting spectral weighting of the multi-spectral line composition of mineral metal elements is higher, which can effectively improve the identification rate of the origin of the rice. The results show that the classification accuracies of single spectral line recognition and multi-spectral line recognition are 90.8 and 94.6%, respectively. It can be concluded that the LIBS technique combined with SVM should be a promising tool for rapidly distinguishing different geographic origins of rice.

About the Authors

P. Yang
Institute of Electronic, Changzhou College of Information Technology
China

Changzhou, Jiangsu



H. T. Liu
Institute of Electronic, Changzhou College of Information Technology
China

Changzhou, Jiangsu



Z. L. Nie
Institute of Electronic, Changzhou College of Information Technology
China

Changzhou, Jiangsu



X. N. Qu
Institute of Electronic, Changzhou College of Information Technology
China

Changzhou, Jiangsu



References

1. S. Kelly, M. Baxter, S. Chapman, C. Rhodes, J. Dennis, P. Brereton, Eur. Food Res. Technol., 214, No. 1, 72 (2002).

2. N. N. Wang, X. W. Feng, Y. P. Sun, P. S. Cong, Z. L. Zhu, J. Instrum. Anal., 32, No. 10, 1227 (2013).

3. C. Maione, B. L. Batista, A. D. Campiglia, F. Barbosa, R. M. Barbosa, Comput. Electron Agric., 121, 101 (2016).

4. J. M. Li, Z. H. Zhu, R. Zhou, N. Zhao, R. X. Yi, X. Y. Yang, X. Y. Li, L. B. Guo, X. Y. Zeng, Y. F. Lu, Anal. Chem., 89, No. 15, 8134 (2017).

5. C. M. Li, Z. M. Zou, X. Y. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, Y. F. Lu, X. Y. Zeng, J. Anal. At. Spectrom., 29, No. 8, 1432 (2014).

6. J. Wang, L. Li, P. Yang, Y. Chen, Y. N. Zhu, M. Tong, Z. Q. Hao, X. Y. Li, Lasers Med. Sci., 33, No. 6, 1381 (2018).

7. M. A. Gondal, M. A. Shemis, A. A. Khalil, M. M. Nasr, B. Gondal, J. Anal. At. Spectrom., 31, No. 2, 506 (2016).

8. P. Yang, R. Zhou, W. Zhang, R. X. Yi, S. S. Tang, L. B. Guo, Z. Q. Hao, X. Y. Li, Y. F. Lu, X. Y. Zeng, Food Chem., 272, 323 (2019).

9. P. Yang, Y. N. Zhu, S. S. Tang, Z. Q. Hao, L. B. Guo, X. Y. Li, Y. F. Lu, X. Y. Zeng, Appl. Opt., 57, No. 14, 3730 (2018).

10. T. B. Chen, L. Y. Zhang, H. Lin, M. H. Liu, J. Y. Chen, M. Y. Yao, J. Anal. At. Spectrom. (2019).

11. R. X. Yi, X. Y. Yang, R. Zhou, J. M. Li, H. W. Yu, Z. Q. Hao, L. B. Guo, X. Y. Li, Y. F. Lu, X. Y. Zeng, Anal. Chem., 90, No. 11, 7080 (2018).

12. R. X. Yi, J. M. Li, X. Y. Yang, R. Zhou, H. W. Yu, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, Y. F. Lu, Anal. Chem., 89, No. 4, 2334 (2017).

13. W. Zhang, R. Zhou, P. Yang, K. Liu, J. J. Yan, P. Y. Gao, Z. Y. Tang, X. Y. Li, Y. F. Lu, X. Y. Zeng, Talanta, 198, 93 (2019).

14. Z. Y. Tang, R. Zhou, Z. Q. Hao, S. X. Ma, W. Zhang, K. Liu, X. Y. Li, X. Y. Zeng, Y. F. Lu, J. Anal. At. Spectrom. (2019).

15. X. Y. Yang, R. X. Yi, X. Y. Li, Z. F. Cui, Y. F. Lu, Z. Q. Hao, J. C. Huang, Z. X. Zhou, G. X. Yao, W. X. Huang, Opt. Express, 26, No. 23, 30456 (2018).

16. Y. Yu, L. B. Guo, Z. Q. Hao, X. Y. Li, M. Shen, Q. D. Zeng, K. H. Li, X. Y. Zeng, Y. F. Lu, Z. Ren, Opt. Express, 22, No. 4, 3895 (2014).

17. G. Bilge, H. M. Velioglu, B. Sezer, K. E. Eseller, I. H. Boyaci, Meat Sci., 119, 118 (2016).

18. S. Moncayo, J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, J. O. Caceres, Talanta, 158, 185 (2016).

19. J. J. Yan, P. Yang, Z. Q. Hao, R. Zhou, X. Y. Li, S. S. Tang, Y. Tang, X. Y. Zeng, Y. F. Lu, Opt. Express, 26, No. 22, 28996 (2018).

20. G. Bekefi, Principles of Laser Plasmas, New York, Wiley-Interscience (1976).

21. R. W. B. Pearse, A. G. Gaydon. The Identification of Molecular Spectra, London, Chapman and Hall (1976).

22. Y. Yu, Z. Q. Hao, C. M. Li, L. B. Guo, K. H. Li, Q. D. Zeng, X. Y. Li, Z. Ren, X. Y. Zeng, AcPSn, 62, No. 21 (2013).

23. C. F. Zeng, L. F. Zhang, J. D. Xu, J. Shu, D. H. Liu, Sci. Technol. Food Ind., 36, No. 4, 367 (2013).


Review

For citations:


Yang P., Liu H.T., Nie Z.L., Qu X.N. Accuracy Improvement of Geographical Indication of Rice by Laser-Induced Breakdown Spectroscopy Using Support Vector Machine with Multi-Spectral Line. Zhurnal Prikladnoii Spektroskopii. 2022;89(3):434.

Views: 171


ISSN 0514-7506 (Print)