Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Optical and Dielectric Properties of ZnO Nematic Liquid Crystals Prepared by the Chemical Precipitation Method

Abstract

Mesogenic 4-pentyl-4′-cyanobiphenyl (5CB) is a commonly used dielectric material for display devices and liquid crystal biosensors. A small concentration of ZnO nanoparticles was dispersed in 5CB nematic liquid crystals by the chemical precipitation method. The phase changes, phase retardation, and transition temperature of the prepared samples were studied by polarizing optical microscopy (POM) and differential scanning calorimetry analysis. The dielectric properties were measured by dielectric spectroscopy, which was performed within the frequency range from 1 Hz to 10 MHz. A novel phase was identified and confirmed by the dielectric parameters in dispersed ZnO 5CB (N5CB). Specifically, the temperature dependence of relaxation times was estimated for both the samples, which strengthen the POM studies and the influence of nanoparticles on the lattice arrangement. The temperature dependence and the dispersion effect of ZnO nanoparticles on the dielectric constant and dielectric losses were also studied. The sensitivity of mesogenic phases to external forces was confirmed through the present work. From all these results, it has been concluded that N5CB finds potential application in the preparation of fast switching devices.

About the Authors

K. V. S. N. Raju
Department of Physics, Koneru Lakshmaiah Educational Foundation
India

Vaddeswaram



Sk. S. Begum
Department of Physics, NRI Institute of Technology
India

Pothavarappadu



B. T. P. Madhav
Antennas and Liquid Crystals Research Center, Department of ECE, Koneru Lakshmaiah Education Foundation
India

Vaddeswaram



M. C. Rao
Department of Physics, Andhra Loyola College
India

Vijayawada



References

1. A. Achour, R. L. Porto, M. Akram Soussou, M. Islam, M. Boujtita, K. Ait, A. Djouadi, T. Brousse, J. Power Sour., 300, 525–532 (2015).

2. X. Wang, P. See Lee, J. Mater. Chem. A, 3, 21706–21712 (2015).

3. Q. Ke, J. Wang, J. Materiomics, 2, 37–54 (2016).

4. S. Sampath, D. D. Sarma, A. K. Shukla, ACS Energy Lett., 1, 1162–1164 (2016).

5. O. Muntesharia, J. Lauc, A. Krishnana, B. Dunnc, L. Pilon, J. Power Sour., 374, 257–268 (2018).

6. A. Armutlulu, L. A. Bottomley, S. A. Bidstrup Allen, M. G. Allen, Chem. Electrochem., 2, 236–245 (2014).

7. L. N. Jin, F. Shao, C. Jin, J. N. Zhang, P. Liu, M. X. Guo, S. W. Bian, Electrochim. Acta, 249, 387–394 (2017).

8. S. Sreehari Sastry, S. Salma Begum, T. Vindhya Kumari, V. R. K. Murthy, S. T. Ha, Asian J. Chem., 9, 2462–2471 (2012).

9. K. V. Surya Narayana Raju, S. Salma Begum, B. Dharma Sagar, S. Babu, Rasayan J. Chem., 10, 37–45 (2017).

10. A. K. Srivastava, A. K. Misra, P. B. Chand, R. Manohar, J. P. Shukla, Phys. Lett. A, 37, 490–498 (2007).

11. R. Manohar, S. P. Yadav, A. K. Srivastava, A. K. Misra, K. K. Pandey, P. K. Sharma, A. C. Pandey, Jpn. J. Appl. Phys., 48, 101501–101506 (2009).

12. J. L. Gomez, O. Tigli, J. Mater. Sci., 48, No. 2, 612–624 (2013).

13. M. Chaari, A. Matoussi, Phys. B Condens. Mater., 407, 3441–3447 (2012).

14. P. G. Cummins, D. A. Dunmur, D. A. Laidler, J. Mol. Cryst. Liq. Cryst., 30, 109–123 (1975).

15. A. Bogi, S. Faetti, J. Liq. Cryst., 28, 729–739 (2001).

16. V. A. Greanya, A. P. Malanoski, B. T. Weslowski, M. S. Spector, Liq. Cryst., 32, 933–941 (2007).

17. S. I. Zhou, K. Neupane, Y. A. Nastishin, A. R. Baldwin, S. V. Shiyanovskii, O. D. Lavrentovich, S. Sprunt, Liq. Cryst., 10, 6571–6581 (2017).

18. S. Mohyeddine, M. B. Pandey, D. Revannasiddaiah, Phase Trans., 82, 11–18 (2009).

19. M. A. Bates, G. R. Luckhurst, Mol. Phys., 99, 1365–1371 (2001).

20. C. Wakai, A. Oleinikova, M. Ott, H. Weingärtner, J. Phys. Chem. B, 109, 17028–17030 (2005).

21. A. Hourri, T. K. Bose, J. Thoen, Phys. Rev. E, 63, 051702 (2001).

22. B. J. Thoen, T. K. Bose, Handbook of Low and High Dielectric Materials and their Applications, H. S. Nalwa Academic Press, San Diego, 1, 501–561 (1999).

23. K. Rajendiran, K. Thananjeyan, S. T. Yoganandham, Inorg. Chem. Comm., 117, 107954(1–7) (2020).

24. V. Tomar, T. F. Roberts, N. L. Abbott, J. P. Hernández-Ortiz, J. J. de Pablo, Langmuir, 28, 6124–6131 (2012).

25. R. P. Pan, T. R. Tsai, C. Y. Chen, C. H. Wang, C. L. Pan, Mol. Cryst. Liq. Cryst., 409, 137–144 (2004).

26. K. Tripathi, K. Mishra, S. M. Swadesh, K. Guptha, R. Manohar, J. Mol. Struct., 1035, 371–377 (2013).

27. A. A. Ward, State of the Art – Dielectric Materials for Advanced Applications, National Research Centre, Egypt (2015).

28. M. M. Abdel-Aal, M. A. Ahmed, L. Ateya, J. Phys. Soc. Jpn., 65, 3351–3356 (1996).

29. A. K. Jonscher, J. Phys. D: Appl. Phys., 32, 57–70 (1999).

30. C. C. Homes, S. M. Shapiro, T. Vogt, Sciences, 293, 673–676 (2001).

31. A. J. Martin, G. Meier, A. Saupe, Symp. Faraday Soc., 5, 119–133 (1971).

32. G. Meir, A. Saupe, Mol. Cryst. Liq. Cryst., 1, 515–525 (1996).

33. B. Bahadur, R. K. Sarna, V. G. Bhide, Mol. Cryst. Liq. Cryst., 88, 151–165 (1982).


Review

For citations:


Raju K., Begum S.S., Madhav B.T., Rao M.C. Optical and Dielectric Properties of ZnO Nematic Liquid Crystals Prepared by the Chemical Precipitation Method. Zhurnal Prikladnoii Spektroskopii. 2022;89(3):437.

Views: 281


ISSN 0514-7506 (Print)