Investigation of the Features of the Surface Structure of Two-Dimensional Layered Materials Ti3C2Tx (T - ОН, О, F) by Infrared Spectroscopy and Raman Spectroscopy Methods
https://doi.org/10.47612/0514-7506-2022-89-4-477-484
Abstract
The methods of infrared (IR) spectroscopy and Raman spectroscopy (RS) are herein used to characterize the features of the surface state of Ti3C2Tx (T = OH–, O2–, F–) layered materials obtained in the form of powder and two-dimensional (2D) particles forming a stable colloidal solution. A powdered sample of Ti3C2Тх is obtained by removing aluminum from Ti3AlC2 by treatment in an HF solution, 2D Ti3C2Тх particles are obtained by treating Ti3AlC2 in an HCl+LiF solution followed by sonication. The phase composition and morphology of the samples are studied by X-ray diffraction and electron microscopy. The IR and Raman spectroscopy methods permitted to differentiate the presence of terminal groups (O2–, OH–, F–) of various nature with a quantitative predominance of the OH form in the Ti3C2Tx powder sample and OH and fluoride ions in 2D Ti3C2Tx particles, and also detect the presence of TiOx impurities.
About the Authors
M. I. IvanovskayaBelarus
Minsk
E. A. Ovodok
Belarus
Minsk
S. K. Poznyak
Belarus
Minsk
D. A. Kotsikau
Belarus
Minsk
I. A. Svito
Belarus
Minsk
References
1. L. Toth. Transition Metal Carbides and Nitrides, New York–London, Academic Press (1971)
2. Э. K. Стормс. Тугоплавкие карбиды, Москва, Атомиздат (1970) 12—26
3. H. J. Goldschmidt. Interstitial Alloys, London, Butterworths (1967)
4. M. W. Barsoum. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, Wiley-VCH Germany (2013)
5. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum. Adv. Mater., 23 (2011) 4248—4253, doi: 10.1002/adma.201102306
6. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M. W. Barsoum. ACS Nano, 6 (2012) 1322—1331, doi: 10.1021/nn204153h
7. X. Sang, Y. Xie, M.-W. Lin, M. Alhabeb, K. L. Van Aken, Y. Gogotsi, P. R. Kent, K. Xiao, R. R. Unocic. ACS Nano, 10 (2016) 9193—9200, doi: 10.1021/acsnano.6b05240
8. Y. Yoon, T. A. Le, A. P. Tiwari, I. Kim, M. W. Barsoum, H. Lee. Nanoscale, 10 (2018) 22429—22438, doi: 10.1039/C8NR06854B
9. B. Anasori, M. R. Lukatskaya, Y. Gogotsi. Nat. Rev. Mater., 2, N 2 (2017) 1—17, doi: 10.1038/natrevmats.2016.98
10. F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong, C. M. Koo, Y. Gogotsi. Science, 353, N 6304 (2016) 1137—1140, doi: 10.1126/science.aag2421
11. T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu, X. Wang. Phys. Chem. Chem. Phys., 17 (2015) 9997—10003, doi: 10.1039/C4CP05666C
12. M. Hu, T. Hu, Z. Li, Y. Yang, R. Cheng, J. Yang, C. Cui, X. Wang. ACS Nano, 12 (2018) 3578—3586, doi: 10.1021/acsnano.8b00676
13. T. Hu, M. Hu, B. Gao, W. Li, X. Wang. J. Phys. Chem. C, 122 (2018) 18501—18509, doi: 10.1021/acs.jpcc.8b04427
14. M. Hu, Z. Li, T. Hu, S. Zhu, C. Zhang, X. Wang. ACS Nano, 10 (2016) 11344—11350, doi: 10.1021/acsnano.6b06597
15. A. Sarycheva, Y. Gogotsi. Chem. Mater., 32 (2020) 3480—3488, doi: 10.1021/acs.chemmater.0c00359
16. V. Presser, M. Naguib, L. Chaput, A. Togo, G. Hug, M. W. Barsoum. J. Raman Spectrosc., 43, N 1 (2012) 168—172, doi: 10.1002/jrs.3036
17. C. J. Zhang, S. Pinilla, N. McEvoy, C. P. Cullen, B. Anasori, E. Long, S. H. Park, A. Seral-Ascaso, A. Shmeliov, D. Krishnan, C. Morant. Chem. Mater., 29, N 11 (2017) 4848—4856, doi: 10.1021/acs.chemmater.7b00745
18. G. Busca, G. Ramis, J. M. G. Amores, V. S. Escribano, P. Piaggio. J. Chem. Soc. Faraday Trans., 90, N 20 (1994) 3181—3190, doi: 10.1039/FT9949003181
19. Е. А. Оводок, М. И. Ивановская, С. К. Позняк, И. И. Азарко, М. Мичусик, А. Н. Анискевич. Свиридовские чтения: сб. ст., 17 (2021) 47—64
20. D. B. Lioi, G. Neher, J. E. Heckler, T. Back, F. Mehmood, D. Nepal, R. Pachter, R. Vaia, W. J. Kennedy. ACS Appl. Nano Mater., 2 (2019) 6087—6091, doi: 10.1021/acsanm.9b01194
21. В. Ф. Сурганов, А. М. Мозалев, Н. И. Татаренко, В. А. Ласточкина. Журн. прикл. спектр., 65 (1998) 200—204 [V. F. Surganov, A. M. Mozalev, N. I. Tatarenko, V. A. Lastochkina. J. Appl. Spectr., 65 (1998) 206—210], doi: 10.1007/BF02680470
22. B. Scheibe, K. Tadyszak, M. Jarek, N. Michalak, M. Kempiński, M. Lewandowski, B. Peplińska, K. Chybczyńska. Appl. Surf. Sci., 479 (2019) 216—224, doi: 10.1016/j.apsusc.2019.02.055
23. A. C. Ferrari, J. Robertson. Phys. Rev. B, 61, N 20 (2000) 14095—14107, doi: 10.1103/PhysRevB.61.14095
24. M. Hu, T. Hu, Z. Li, Y. Yang, R. Cheng, J. Yang, C. Cui, X. Wang. ACS Nano, 12 (2018) 3578—3586, doi: 10.1021/acsnano.8b00676
Review
For citations:
Ivanovskaya M.I., Ovodok E.A., Poznyak S.K., Kotsikau D.A., Svito I.A. Investigation of the Features of the Surface Structure of Two-Dimensional Layered Materials Ti3C2Tx (T - ОН, О, F) by Infrared Spectroscopy and Raman Spectroscopy Methods. Zhurnal Prikladnoii Spektroskopii. 2022;89(4):477-484. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-4-477-484