Effect of Nitrogen Doping on the Structural and Optical Properties of Zn2GeO4 Phosphors
Abstract
Nitrogen-doped Zn2GeO4 (ZGO:N) phosphors were synthesized using a chemical hydrothermal approach. The influence of nitrogen doping on the structural and optical properties of ZGO phosphors was investigated. Results indicated that N ions substituted for O ions successfully and N doping expanded throughout the unit cell of the crystal host lattice. We observed a slight blue-shift in bandgap energy, which signified the weak quantum confinement of the prepared ZGO nanoparticles. At a 260-nm excitation wavelength, compared with the photoluminescence (PL) spectrum of the ZGO phosphors, the peak position of emission of the N-doped ZGO phosphors blue shifted. In the vibrational modes of ZGO owing to N incorporation, H substituted at the O site, subsequently causing passivation in ZGO:N nanoparticles. The concentration of N ions in ZGO:N played important roles in the evolution of PL intensity and quality of nanocrystals. This result contributed to the optimization of nitrogen-doped phosphors with 5 mol% content. The possible luminescence mechanism of ZGO:N phosphors was also discussed.
About the Authors
N. M. C. H. LanViet Nam
Hanoi
D. V. Tuan
Viet Nam
Hanoi
T. Q. Tuan
Viet Nam
Hanoi
N. D. Kien
Viet Nam
Hanoi
C. X. Thang
Viet Nam
Hanoi
N. V. Tung
Viet Nam
Hanoi
N. T. Giang
Viet Nam
Hanoi
References
1. L. I. Bo, S. Shu-yan, S. U. N. Xiu-juan, P. Jing, W. Bo, X. Yan, Chem. Res. Chin., 28, 764–767 (2012).
2. Z. Liu, X. Jing L. Wang, J. Electrochem. Soc., 154, H500 (2007).
3. Y. Li, K. Ding, B. Cheng, Y. Zhang, Y. Lu, Phys. Chem. Chem. Phys., 17, 5613–5623 (2015).
4. N. M. C. H. P. Lan, C. X. Thang, V.-H. Pham, P. T. Kien, V. T. N. Minh, T. T. H. Tam, Optik (Stuttg.), 199, 163310 (2019).
5. J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, J. Phys. Chem. B, 108, 4369–4375 (2004).
6. S. Takeshita, J. Honda, T. Isobe, T. Sawayama, S. Niikura, Cryst. Growth Des., 10, 4494–4500 (2010).
7. Z. Gu, F. Liu, X. Li, Z. W. Pan, Phys. Chem. Chem. Phys., 15, 7488–7493 (2013).
8. Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, Z. Zou, J. Am. Chem. Soc., 132, 14385–14387 (2010).
9. M. Shang, G. Li, D. Yang, X. Kang, C. Peng, J. Lin, Dalton Trans., 41, 8861–8868 (2012).
10. Y. Li, A. Zhao, C. Chen, C. Zhang, J. Zhang, G. Jia, Dyes Pig., 150, 267–274 (2018).
11. Q. Bai, P. Li, Z. Wang, S. Xu, T. Li, Z. Yang, Z. Xu, Spectrochim. Acta A: Mol. Biomol. Spectr., 199, 179–188 (2018).
12. Q. Bai, Z. Wang, P. Li, S. Xu, T. Li, Z. Yang, RSC Adv., 6, 102183–102192 (2016).
13. G. Gao, L. Wondraczek, J. Mater. Chem. C, 1, 1952–1958 (2013).
14. R. Kumari, A. Sahai, N. Goswami, Progress Nat. Sci. Mater. Int., 25, 300–309 (2015).
15. M. Cohen, Elements of Diffraction, Addison-Wesley Co. Inc., 459–460 (1956).
16. N. Goswami, D. K. Sharma, Physica E, 42, 1675–1682 (2010).
17. O. Yamaguchi, J. Hidaka, K. Hirota, J. Mater. Sci. Lett., 10, 1471 (1991).
18. S. Limpijumnong, X. Li, S. H. Wei, S. Zhang, Physica B, 376, 686–689 (2006).
19. Z. J. Gu, F. Liu, X. F. Li, Z. W. Pan, Phys. Chem. Chem. Phys., 15, 7488 (2013).
20. G. J. Gao, L. Wondraczek, J. Mater. Chem. C Mater. Opt. Electron. Dev., 1, 1952 (2013).
21. J. I. Pankove, Optical Processes in Semiconductors, New York, Courier Corporation (2012).
22. A. Boonchun, W. R. Lambrecht, Phys. Status Solidi b, 250, 2091–2101 (2013).
23. S. Lautenschlaeger, M. Hofmann, S. Eisermann, G. Haas, M. Pinnisch, A. Laufer, B. Meyer, Phys. Status Solidi b, 248, 1217–1221 (2011).
Review
For citations:
Lan N.C., Tuan D.V., Tuan T.Q., Kien N.D., Thang C.X., Tung N.V., Giang N.T. Effect of Nitrogen Doping on the Structural and Optical Properties of Zn2GeO4 Phosphors. Zhurnal Prikladnoii Spektroskopii. 2022;89(4):485-490.