Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Control of Laser Processing of Structural Materials Using Thermal Imaging and Spectral Technolog

https://doi.org/10.47612/0514-7506-2022-89-4-568-579

Abstract

The possibilities of thermal imaging and spectral technology in organization of the control of laser technological processes of high-temperature modification of structural materials are analyzed. It is shown that the application of thermal imaging technology is reasonable when adjusting these processes. For continuous control it is more perspective to apply small spectral technique. Solutions are proposed that allow continuous monitoring on the basis of determination of two parameters: the effective heating temperature Te of the treated surface in the area of influence of laser radiation and parameter a associated with the effective heating area. It is shown that introduction of small-sized spectral devices for continuous monitoring into the feedback loop of the control system for laser set-ups is promising. 

About the Authors

V. A. Firago
Belarusian State University
Belarus

 Minsk 



O. G. Devoino
Belarusian National Technical University
Belarus

 Minsk 



A. S. Lapkovsky
Belarusian National Technical University
Belarus

 Minsk 



A. N. Sobchuk
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

 Minsk 



References

1. J. Dowden. The Theory of Laser Materials Processing, Springer Series in Materials Sciences, 119, New York, Springer (2009) 23—75

2. H. Kyogoku, T. Ikeshoji. Mech. Eng. Rev., 7, N 1 (2020) 1—19, doi: 10.1299/mer.19-00182

3. H. Helvajian. J. Laser Micro/Nanoengineering, 4, N 1 (2009) 1—6, doi: 10.1299/mer.19-00182

4. W. Xizhao, D. Jun, J. Ming, K. Shanhao, W. Baoye, Z. Xiaoyan. Int. J. Adv. Manuf. Technol., 92 (2017) 4571—4581, doi: 10.1007/s00170-017-0413-z

5. F. Calignano, M. Galati, L. Iuliano. Mashines, 7, N 4 (2019) 72—93, doi: 10.3390/machines7040072

6. M. Skalon, B. Meier, A. Gruberbauer, S. Amancio-Filho. Materials, 13, N 3 (2020) 808—824, doi: 10.3390/ma13030808

7. H. Wang, W. Liu, Z. Tang, Y. Wang, X. Mei, K. M. Saleheen, Z. Wang, H. Zhang. Opt. Eng., 59, N 7 (2020) 070901(1—18), doi: 10.1117/1.OE.59.7.070901

8. S. Everton, M. Hirsch, P. Stravroulakis, R. Leach, A. N. Clare. Materials and Design, 95, N 5 (2016) 431—445, doi: 10.1016/j.matdes.2016.01.099

9. I. Eriksson. Optical Monitoring and Analysis of Laser Welding. Printed by Universitetstryckeriet, Luleе University of Technology (2011) 1—82

10. X. He, T. Deb Roy. J. Appl. Phys., 94, N 10 (2003) 6949—6958, doi: 10.1063/1.1622118

11. А. Н. Черепанов, В. П. Шапеев. Теплофизика и аэромеханика, 20, № 2 (2013) 239—253

12. В. И. Богданович, М. Г. Гиорбелидзе, А. В. Сотов, Н. Д. Проничев, В. Г. Смелов, А. В. Агаповичев. Изв. Самарского науч. центра Российской АН, 19, № 4 (2017) 105—114

13. T. Sibillano, A. Ancona, V. Berardi, P. Lugara. Sensors, 9, N 5 (2009) 3376—3385 doi.org/10.3390/s90503376

14. Y. Saadlaoui, J. Sijobert, M. Doubenskaia, F. Bertrand, E. Feulvarch, J. M. Bergheau. Crystals, 10, N 4 (2020) 246, doi: org/10.3390/cryst10040246

15. D. You, X. Gao, S. Katayama. Science and Technology of Welding and Joining, 19, N 3 (2014) 81—201, doi: 10.1179/1362171813Y.0000000180

16. J. Stavridis, A. Papacharalampopoulos, P. Stavropoulos. Int. J. Advanced Manufacturing Technology, 94 (2017) 1825—1847, doi: 10.1007/s00170-017-0461-4

17. Q. Pengyuan, W. Gang, G. Zhen, L. Xianghua, W. Liu. Materials, 12, N 20 (2019) 3322—3333, doi: 10.3390/ma12203322

18. G. Repossini, V. Laguzza, G. Marco, B. Colosima. Additive Manufacturing, 16 (2017) 35—48, doi: 10.1016/j.addma.2017.05.004

19. I. Zhirnov, D. Kotoban, A. Gusarov. Appl. Phys. A, 124, N 2 (2018) 157—166, doi: 10.1007/s00339017-1532-y

20. I. Zhirnov, C. Protasov, D. Kotoban, A. Gusarov. J. Thermal Spray Technol., 26, N 4 (2017) 648—660, doi: 10.1007/s11666-017-0523-z

21. D. Dagel, G. Grossetete, O. Danny. Measurement of Laser Weld Temperatures for 3D Model Input. Sandia National Laboratories, United States, New Mexico, 4–28 (2016)

22. D. Qu, J. Berry, N. Calta, M. Crumb, G. Guss, M. J. Mathews. Phys. Rev. Appl., 14 (2020) 014031—014043, doi: 10.1103/PhysRevApplied.14.014031

23. L. Jacquemetton, M. Piltch, D. Beckett. Thermal Calibration of Commercial Melt Pool Monitoring Sensors on a Laser Powder Bed Fusion System. Natl. Inst. Stand. Technol. Adv. Man. Ser., 100-35 (2020) 1—20, doi: 10.6028/NIST.AMS.100-35

24. W. Wójcik, V. Firago, A. Smolarz, I. Shedreyeva, D. Yeraliyeva. Sensors, 22 (2022) 742—764, doi: 10.3390/s22030742

25. V. Firago, W. Wojcik. Przegląd Elektrotech., 91, N 2 (2015) 208—214

26. В. А. Фираго. Цифровая термография, Минск, БГУ (2019) 195, 236

27. IMEC. Hyperspectral Imaging. Sensors. Available online: https://www.imecint.com/en/hyper-spectralimaging (accessed on 17 September 2018)

28. А. Н. Магунов. Спектральная пирометрия, Москва, Физматлит (2012) 23—38

29. V. A. Firago, W. Wojcik, M. S. Dzhunisbekov. Russ. Metallurgy (Metally), 11 (2019) 1224—1230, doi: 10.1134/S0036029519110053


Review

For citations:


Firago V.A., Devoino O.G., Lapkovsky A.S., Sobchuk A.N. Control of Laser Processing of Structural Materials Using Thermal Imaging and Spectral Technolog. Zhurnal Prikladnoii Spektroskopii. 2022;89(4):568-579. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-4-568-579

Views: 249


ISSN 0514-7506 (Print)