

Control of Laser Processing of Structural Materials Using Thermal Imaging and Spectral Technolog
https://doi.org/10.47612/0514-7506-2022-89-4-568-579
Abstract
The possibilities of thermal imaging and spectral technology in organization of the control of laser technological processes of high-temperature modification of structural materials are analyzed. It is shown that the application of thermal imaging technology is reasonable when adjusting these processes. For continuous control it is more perspective to apply small spectral technique. Solutions are proposed that allow continuous monitoring on the basis of determination of two parameters: the effective heating temperature Te of the treated surface in the area of influence of laser radiation and parameter a associated with the effective heating area. It is shown that introduction of small-sized spectral devices for continuous monitoring into the feedback loop of the control system for laser set-ups is promising.
About the Authors
V. A. FiragoBelarus
Minsk
O. G. Devoino
Belarus
Minsk
A. S. Lapkovsky
Belarus
Minsk
A. N. Sobchuk
Belarus
Minsk
References
1. J. Dowden. The Theory of Laser Materials Processing, Springer Series in Materials Sciences, 119, New York, Springer (2009) 23—75
2. H. Kyogoku, T. Ikeshoji. Mech. Eng. Rev., 7, N 1 (2020) 1—19, doi: 10.1299/mer.19-00182
3. H. Helvajian. J. Laser Micro/Nanoengineering, 4, N 1 (2009) 1—6, doi: 10.1299/mer.19-00182
4. W. Xizhao, D. Jun, J. Ming, K. Shanhao, W. Baoye, Z. Xiaoyan. Int. J. Adv. Manuf. Technol., 92 (2017) 4571—4581, doi: 10.1007/s00170-017-0413-z
5. F. Calignano, M. Galati, L. Iuliano. Mashines, 7, N 4 (2019) 72—93, doi: 10.3390/machines7040072
6. M. Skalon, B. Meier, A. Gruberbauer, S. Amancio-Filho. Materials, 13, N 3 (2020) 808—824, doi: 10.3390/ma13030808
7. H. Wang, W. Liu, Z. Tang, Y. Wang, X. Mei, K. M. Saleheen, Z. Wang, H. Zhang. Opt. Eng., 59, N 7 (2020) 070901(1—18), doi: 10.1117/1.OE.59.7.070901
8. S. Everton, M. Hirsch, P. Stravroulakis, R. Leach, A. N. Clare. Materials and Design, 95, N 5 (2016) 431—445, doi: 10.1016/j.matdes.2016.01.099
9. I. Eriksson. Optical Monitoring and Analysis of Laser Welding. Printed by Universitetstryckeriet, Luleе University of Technology (2011) 1—82
10. X. He, T. Deb Roy. J. Appl. Phys., 94, N 10 (2003) 6949—6958, doi: 10.1063/1.1622118
11. А. Н. Черепанов, В. П. Шапеев. Теплофизика и аэромеханика, 20, № 2 (2013) 239—253
12. В. И. Богданович, М. Г. Гиорбелидзе, А. В. Сотов, Н. Д. Проничев, В. Г. Смелов, А. В. Агаповичев. Изв. Самарского науч. центра Российской АН, 19, № 4 (2017) 105—114
13. T. Sibillano, A. Ancona, V. Berardi, P. Lugara. Sensors, 9, N 5 (2009) 3376—3385 doi.org/10.3390/s90503376
14. Y. Saadlaoui, J. Sijobert, M. Doubenskaia, F. Bertrand, E. Feulvarch, J. M. Bergheau. Crystals, 10, N 4 (2020) 246, doi: org/10.3390/cryst10040246
15. D. You, X. Gao, S. Katayama. Science and Technology of Welding and Joining, 19, N 3 (2014) 81—201, doi: 10.1179/1362171813Y.0000000180
16. J. Stavridis, A. Papacharalampopoulos, P. Stavropoulos. Int. J. Advanced Manufacturing Technology, 94 (2017) 1825—1847, doi: 10.1007/s00170-017-0461-4
17. Q. Pengyuan, W. Gang, G. Zhen, L. Xianghua, W. Liu. Materials, 12, N 20 (2019) 3322—3333, doi: 10.3390/ma12203322
18. G. Repossini, V. Laguzza, G. Marco, B. Colosima. Additive Manufacturing, 16 (2017) 35—48, doi: 10.1016/j.addma.2017.05.004
19. I. Zhirnov, D. Kotoban, A. Gusarov. Appl. Phys. A, 124, N 2 (2018) 157—166, doi: 10.1007/s00339017-1532-y
20. I. Zhirnov, C. Protasov, D. Kotoban, A. Gusarov. J. Thermal Spray Technol., 26, N 4 (2017) 648—660, doi: 10.1007/s11666-017-0523-z
21. D. Dagel, G. Grossetete, O. Danny. Measurement of Laser Weld Temperatures for 3D Model Input. Sandia National Laboratories, United States, New Mexico, 4–28 (2016)
22. D. Qu, J. Berry, N. Calta, M. Crumb, G. Guss, M. J. Mathews. Phys. Rev. Appl., 14 (2020) 014031—014043, doi: 10.1103/PhysRevApplied.14.014031
23. L. Jacquemetton, M. Piltch, D. Beckett. Thermal Calibration of Commercial Melt Pool Monitoring Sensors on a Laser Powder Bed Fusion System. Natl. Inst. Stand. Technol. Adv. Man. Ser., 100-35 (2020) 1—20, doi: 10.6028/NIST.AMS.100-35
24. W. Wójcik, V. Firago, A. Smolarz, I. Shedreyeva, D. Yeraliyeva. Sensors, 22 (2022) 742—764, doi: 10.3390/s22030742
25. V. Firago, W. Wojcik. Przegląd Elektrotech., 91, N 2 (2015) 208—214
26. В. А. Фираго. Цифровая термография, Минск, БГУ (2019) 195, 236
27. IMEC. Hyperspectral Imaging. Sensors. Available online: https://www.imecint.com/en/hyper-spectralimaging (accessed on 17 September 2018)
28. А. Н. Магунов. Спектральная пирометрия, Москва, Физматлит (2012) 23—38
29. V. A. Firago, W. Wojcik, M. S. Dzhunisbekov. Russ. Metallurgy (Metally), 11 (2019) 1224—1230, doi: 10.1134/S0036029519110053
Review
For citations:
Firago V.A., Devoino O.G., Lapkovsky A.S., Sobchuk A.N. Control of Laser Processing of Structural Materials Using Thermal Imaging and Spectral Technolog. Zhurnal Prikladnoii Spektroskopii. 2022;89(4):568-579. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-4-568-579