MID-IR Range Quantum Cascade Lasers in Compact Optoacoustic Gas Analyzers
https://doi.org/10.47612/0514-7506-2022-89-4-580-586
Abstract
The choice of the generation modes of quantum cascade lasers for optical-acoustic sensors of methane and ammonia is substantiated and the tuning and output characteristics of these lasers depending on the current and temperature are given. The results of experiments on studying the concentration sensitivity of working samples of devices developed on the basis of these lasers and ready for testing are presented. It is shown that the linear dynamic range of methane concentration measurement using the optoacoustic gas analyzer under study was approximately four decades: from ~0.3 to ~2000–3000 ppm CH4.
About the Authors
D. B. KolkerRussian Federation
Novosibirsk
I. V. Sherstov
Russian Federation
Novosibirsk
A. A. Boiko
Russian Federation
Novosibirsk
Tomsk
N. Yu. Kostyukova
Russian Federation
Novosibirsk
E. Yu. Erushin
Russian Federation
Novosibirsk
A. V. Pavluck
Russian Federation
Novosibirsk
References
1. P. L. Meyer, M. W. Sigrist. Rev. Sci. Instrum., 61 (1990) 1779, https://doi.org/10.1063/1.1141097
2. E. Zanzottera. Critical Rev. Anal. Chem., 21, N 4 (1990) 279—319, https://doi.org/10.1080/10408349008051632
3. В. П. Жаров, В. С. Летохов. Лазерная оптико-акустическая спектроскопия, Москва, Наука (1984) [4] Ю. Н. Пономарев, Б. Г. Агеев, М. В. Зигрист, В. А. Капитанов, Д. Куртуа, О. Ю. Никифорова. В сб. “Лазерная оптико-акустическая спектроскопия межмолекулярных взаимодействий в газах”, под ред. Л. Н. Синицы, Томск, РАСКО (2000)
4. F. J. M. Harren, S. M. Cristescu. Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd. (2019), https://doi.org/10.1002/9780470027318.a0718.pub3
5. A. Sampaolo, P. Patimisco, M. Giglio. Opt. Express, 24, N 14 (2016) 15872, https://www.researchgate.net/publication/304894937
6. H. Zheng, M. Lou, L. Dong. Opt. Express, 25, N 14 (2017) 16761, https://doi.org/10.1364/OE.25.016761
7. H. Zheng, Y. Liu, H. Lin. Opt. Express, 28, N 13 (2020) 19446, https://doi.org/10.1364/OE.391322
8. F. Sgobba, A. Sampaolo, P. Patimisco. Photoacoustics, 25 (2022) 100318, https://doi.org/10.1016/j.pacs.2021.100318
9. M. Giglio, A. Zifarelli, A. Sampaolo. Photoacoustics, 17 (2020) 100159, https://doi.org/10.1016/j.pacs.2019.100159
10. X. Yin, H. Wu, L. Dong. ACS Sens., 5, N 2 (2020) 549—556, https://dx.doi.org/10.1021/acssensors.9b02448?ref=pdf
11. A. A. Karapuzikov, I. V. Sherstov, D. B. Kolker. Phys. Wave Phenom., 22, N 3 (2014) 189, https://doi.org/10.3103/S1541308X14030054
12. NIST Standard Reference Database: http://webbook.nist.gov/chemistry/
13. Д. Б. Колкер, И. В. Шерстов, Н. Ю. Костюкова, А. А. Бойко, К. Г. Зенов, Р. В. Пустовалова.
14. Квант. электрон., 47, № 1 (2017) 14—19 [D. B. Kolker, I. V. Sherstov, N. Yu. Kostyukova, A. A. Boyko, K. G. Zenov, R. V. Pustovalova. Quantum Electron., 47, N 1 (2017) 14—19], https://doi.org/10.1070/QEL16238
15. I. V. Sherstov, D. B. Kolker, A. A. Boyko, V. A. Vasiliev, R. V. Pustovalova. Infrared Phys. Tech., 117 (2021) 103858
16. I. V. Sherstov, D. B. Kolker. Quantum Electron., 50, N 11 (2020) 1063
Review
For citations:
Kolker D.B., Sherstov I.V., Boiko A.A., Kostyukova N.Yu., Erushin E.Yu., Pavluck A.V. MID-IR Range Quantum Cascade Lasers in Compact Optoacoustic Gas Analyzers. Zhurnal Prikladnoii Spektroskopii. 2022;89(4):580-586. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-4-580-586