Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Mixed Gas Concentration Inversion Based on the Ultraviolet Absorption Spectrum by a Hierarchical Convolutional Neural Network

Abstract

A hierarchical convolutional neural network (CNN) model for mixed gas concentration inversion  is proposed. In our experiment, mixtures of SO2, NO2, and NH3 were analyzed. SO2 and NO2 were the detected gases, while NH3 was the interfering gas. For the simulation samples, the average absolute errors were 0.5 and 0.9 ppm for SO2 and NO2, respectively. For the experimental samples, the model performed well when the absorption intensities of components differed by no more than one order of magnitude. Compared with the single-module CNN model without a hierarchical structure, the results demonstrate that  the hierarchical structure reduces cross-interference and improves the prediction accuracy to a great extent. We believe that our model will have a promising application in the field of gas detection.

About the Authors

C. Lu
Advanced Photonics Center, School of Electronic Science & Engineering at Southeast University
China

Nanjing, Jiangsu



Y. Bian
Advanced Photonics Center, School of Electronic Science & Engineering at Southeast University
China

Nanjing, Jiangsu



X. Hu
Advanced Photonics Center, School of Electronic Science & Engineering at Southeast University
China

Nanjing, Jiangsu



S. Jin
Advanced Photonics Center, School of Electronic Science & Engineering at Southeast University
China

Nanjing, Jiangsu



Y. Huang
Advanced Photonics Center, School of Electronic Science & Engineering at Southeast University
China

Nanjing, Jiangsu



Y. Cui
Advanced Photonics Center, School of Electronic Science & Engineering at Southeast University
China

Nanjing, Jiangsu



References

1. H. Amal, D. Shi, R. Ionescu, W. Zhang, Q. Hua, Y. Pan, L. Tao, H. Liu, H. Haick, Int. J. Cancer., 136, No. 6, E614–E622 (2015).

2. T. Xu, C. Tang, T. Yang, W. Zhu, J. Liu, Int. J. Rock Mech. Min. Sci., 43, No. 6, 905–919 (2006).

3. Y. Zhang, H. Guo, Z. Lu, L. Zhan, P. Hung, Eng. Appl. Art. Intell., 92, 103643 (2020).

4. M. Schroter, A. Obermeier, D. Bruggemann, M. Plechschmidt, O. Klemm, J. Air Waste Manage. Ass., 53, No. 6, 716–723 (2003).

5. J. H. Yang, J. Jung, J. H. Ryu, J. J. Yoh, Chemosphere, 257, 127237 (2020).

6. M. Lassen, D. B. Harder, A. Brusch, O. S. Nielsen, D. Heikens, S. Persijn, J. C. Petersen, Opt. Express, 25, No. 3, 1806–1814 (2017).

7. J. Uotila, V. Koskinen, J. Kauppinen, Vib. Spectrosc., 38, No. 1-2, 3–9 (2005).

8. H. O. Edwards, J. P. Dakin, Sens. Act. B: Chem., 11, No. 1-3, 9–19 (1993).

9. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. J. Cho, H. Dai, Science, 287, No. 5453, 622625 (2000).

10. S. Herberger, M. Herold, H. Ulmer, A. Burdack-Freitag, F. Mayer, Build. Environ., 45, No. 11, 2430–2439 (2010).

11. V. Kampitakis, E. Gagaoudakis, D. Zappa, E. Comini, E. Aperathitis, A. Kostopoulos, G. Kiriakidis, V. Binas, Mat. Sci. Sem. Proc., 115, 105149 (2020).

12. P. Mahbub, A. Noori, J. S. Parry, J. Davis, A. Lucieer, M. Macka, Talanta, 218, 121144 (2020).

13. Z. Bielecki, T. Stacewicz, J. Smulko, J. Wojtas, Appl. Sci.-Basel., 10, No. 15, 5111 (2020).

14. L. Shao, B. Fang, F. Zheng, X. Qiu, Q. He, J. Wei, C. Li, W. Zhao, Spectrochim. Acta A, 222, 117118 (2019).

15. L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, R. J. Griffin, Opt. Express, 24, No. 6, A528–A535 (2016).

16. J. Zhao, S. Xiao, Optik, 195, 163142 (2019).

17. S. Khan, D. Newport, S. Le Calvé, Sensors, 19, No. 23, 5210 (2019).

18. L. Mei, P. Guan, Z. Kong, Opt. Express, 25, No. 20, A953–A962 (2017).

19. G. Hönninger, C. von Friedeburg, U. Platt, Atm. Chem. Phys., 4, No. 36, 231–254 (2004).

20. J. Mellqvist, A. Rosen, J. Quant. Spectrosc. Radiat. Transfer, 56, No. 2, 209–224 (1996).

21. S. Determann, J. M. Lobbes, R. Reuter, J. Rullkotter, Mar. Chem., 62, No. 1-2, 137–156 (1998).

22. Y. Matsumi, H. Shigemori, K. Takahashi, Atm. Environ., 39, No. 17, 3177–3185 (2005).

23. J. Yang, L. Du, Y. Cheng, S. Shi, C. Xiang, J. Sun, B. Chen, Opt. Express, 28, No. 13, 18728–18741 (2020).

24. C. L. Hammer, G. W. Small, R. J. Combs, R. B. Knapp, R. T. Kroutil, Anal. Chem., 72, No. 7, 1680–1689 (2000).

25. M. Caselli, L. Trizio, G. de Gennaro, P. Ielpo, Water Air Soil Poll., 201, No. 1-4, 365–377 (2009).

26. A. A. Tomchenko, G. Harmer, B. Marquis, J. Allen, Sens. Act. B: Chem., 93, No. 1-3, 126–134 (2003).

27. L. Song, H. Wu, Y. Yang, Q. Guo, J. Li, Appl. Opt., 59, No. 17, E9–E16 (2020).

28. J. Wang, M. Shi, P. Zheng, Sh. Xue, R. Peng, J. Appl. Spectrosc., 85, 190–196 (2018).

29. S. Cui, J. Wang, L. Yang, J. Wu, X. Wang, J. Pharm. Biomed. Anal., 102, 64–77 (2015).

30. Y. Yu, Y. Qu, Optik, 217, 164915 (2020).

31. L. Xiao, K. Tong, L. Song, L. Wang, P. Wu, W. Liu, X. Zhao, Opt. Eng., 59, No. 12, 125101 (2020).

32. X. Wang, Z. Li, D. Zheng, W. Wang, J. Appl. Spectrosc., 87, 54–61 (2020).

33. Y. Chen, H. Jiang, C. Li, X. Jia, P. Ghamisi, J. Geosci. Remote, 54, No. 10, 6232–6251 (2016).

34. L. Jing, M. Zhao, P. Li, X. Xu, Measurement, 111, 1–10 (2017).

35. W. Wang, Y. Yang, X. Wang, W. Wang, J. Li, Opt. Eng., 58, No. 4, 040901 (2019).

36. S. L. Manatt, A. L. Lane, J. Quant. Spectrosc. Radiat. Transfer, 50, 267–276 (1993).

37. W. Schneider, G. K. Moortgat, J. P. Burrows, G. S. Tyndall, J. Photochem. Photobiol. A: Chem., 40, 195–217 (1987).

38. B. M. Cheng, H. C. Lu, H. K. Chen, M. Bahou, Y. P. Lee, A. M. Mebel, L. C. Lee, M. C. Liang, Y. L. Yung, Astrophys. J., 647, 1535–1542 (2006).

39. J. Brion, A. Chakir, D. Daumont, J. Malicet, C. Parisse, Chem. Phys. Lett., 213, 610–612 (1993).

40. H. Grosch, A. Fateev, S. Clausen, J. Quant. Spectrosc. Radiat. Transfer, 154, 28–34 (2015).


Review

For citations:


Lu C., Bian Y., Hu X., Jin S., Huang Y., Cui Y. Mixed Gas Concentration Inversion Based on the Ultraviolet Absorption Spectrum by a Hierarchical Convolutional Neural Network. Zhurnal Prikladnoii Spektroskopii. 2022;89(4):591.

Views: 149


ISSN 0514-7506 (Print)