Green Synthesis, Characterization, and Antibacterial Activity of Metal Nanoparticles and Nanocomposites Using Leaves Extract of Prunus persica L
Abstract
The ZnO, MgO, NiO, and AlO nanoparticles and Zn-Al and Mg-Ni composite oxides were synthesized by the green method from the Prunus persica leaves extract. The synthesized nanoparticles were characterized through FTIR, XRD, SEM, and TEM. The FTIR study was carried out to find out the presence of various functional groups in nanoparticles. Their size was studied by the XRD method which exposed that the nanoparticles were in the range of 19–29 nm, and the size and morphology were studied by SEM, which was further confirmed by TEM. The synthesized nanoparticles were tested for antibacterial activity. In particular, ZnO showed a good inhibitory effect with 22.31 mm of inhibition against Pseudomonas aeruginosa.
About the Authors
T. U. RahmanPakistan
AJ&K
S. Mukhtar
Pakistan
AJ&K
M. A. Zeb
Pakistan
AJ&K
W. Liaqat
Pakistan
AJ&K
References
1. W. Shenton, T. Douglas, M. Young, G. Stubbs, S. Mann, Adv. Mater., 11, 230–256 (1999).
2. N. V. Medvedeva, O. M. Ipatova, Y. D. Ivanov, A. I. Drozhzhin, A. I. Archakov, Biochem. (Moscow), Suppl. B: Biomed. Chem., 1, 114–124 (2007), doi: 10.1134/S1990750807020023.
3. S. Tang, C. Mao, Y. Liu, D. Q. Kelly, S. K. Banerjee, IEEE Trans. Electron. Devices, 54, 433–438 (2007), doi: 10.1109/TED.2006.890234.
4. K. Thakkar, S. Mhatre, R. Parikh, Nanotechnol. Biol. Med., 6, 257–262 (2009), doi: 10.1016/j.nano.2009.07.002.
5. L. Wang, X. Chen, J. Zhan, Y. Chai, C. Yang, L. Xu, et al., J. Phys. Chem. B, 109, 3189–3194 (2005), doi: 10.1021/jp0449152.
6. H. You, S. Yang, B. Ding, H. Yang, Chem. Soc. Rev., 42, 2880–2904 (2013), doi: 10.1039/C2CS35319A.
7. P. Singh, Y.-J. Kim, D. Zhang, D.-C. Yang, Trends Biotechnol., 34, 588–599 (2016), doi: 10.1016/j.tibtech.2016.02.006.
8. R. S. Varma, Curr. Opin. Chem. Eng., 1, 123–128 (2012).
9. L. F. B. Nogueira, É. J. Guidelli, S. M. Jafari, A. P. Ramos, In: Handbook of Food Nanotechnology, Ed. S. M. Jafari, Academic Press, Cambridge, MA, USA, 257–278 (2020), ISBN 978-0-12-815866-1.
10. M. Hekmati, S. Hasanirad, A. Khaledi, D. Esmaeili, Gene Rep., 19, 100589 (2020).
11. M. Khalaj, M. Kamali, M. E. V. Costa, I. Capela, J. Clean. Prod., 267, 122036 (2020).
12. M. Yadi, E. Mostafavi, B. Saleh, et al., Cells Nanomed. Biotechnol., 46, S336–S343 (2018).
13. D. Hou, D. O’Connor, In Sustainable Remediation of Contaminated Soil and Groundwater, Ed. D. Hou, Butterworth-Heinemann, Waltham, MA, USA, 1–17 (2020) ISBN 978-0-12-817982-6.
14. M. Fasciotti, Sustain. Chem. Pharm., 6, 82–89 (2017).
15. S. Pizato, W. R. Cortez‐Vega, J. T. A. de Souza, C. Prentice‐Hernández, C. D. Borges, J. Food Safety, 33, No. 1, 30–39 (2013).
16. R. Scorza, Peach and Apricot. Processing Fruits: Science and Technology, CRC Press, New York, 481–483 (2005).
17. X. Zhao, W. Zhang, X. Yin, et al., Int. J. Mol. Sci., 16, No. 3, 5762–5778 (2015).
18. G. W. Cheng, C. H. Crisosto, J. Am. Soc. Horticult. Sci., 120, No. 5, 835–838 (1995).
19. S. Chang, C. Tan, E. N. Frankel, D. M. Barrett, J. Agric. Food Chem., 48, No. 2, 147–151 (2000).
20. B. A. Cevallos-Casals, D. Byrne, W. R. Okie, L. Cisneros-Zevallos, Food Chem., 96, No. 2, 273–280 (2006).
21. R. Infante, L. Contador, P. Rubio, D. Aros, Á. Peña-Neira, Chil. J. Agric. Res., 71, No. 3, 445 (2011).
22. E. Bakir, N. Türker, Ö. İstanbullu, Gıda, 32, No. 1, 15–23 (2007).
23. G. Montevecchi, G. V. Simone, M. G. Mellano, F. Masino, A. Antonelli, Fruits, 68, No. 3, 195–207 (2013).
24. Taj Ur Rahman, Hammad Khan, Wajiha Liaqat, Muhammad Aurang Zeb, Microscopy Res. Tech. (2021), doi: 10.1002/jemt.23896.
25. A. S. Eppler, J. Zhu, E. A. Anderson, G. A. Somorjai, Top Catal., 13, 33–41 (2000).
Review
For citations:
Rahman T.U., Mukhtar S., Zeb M.A., Liaqat W. Green Synthesis, Characterization, and Antibacterial Activity of Metal Nanoparticles and Nanocomposites Using Leaves Extract of Prunus persica L. Zhurnal Prikladnoii Spektroskopii. 2022;89(4):594.