Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

New Insights on Modern Age Coins by Calibration-Free Laser-Induced Breakdown Spectroscopy Method and Chemometric Approaches

Abstract

The elemental composition of one- and two-rupee coins issued in different years by the Reserve Bank of India (RBI) was investigated using laser-induced breakdown spectroscopy (LIBS). Aiming to preserve the surfaces of coins, the LIBS technique can perform real-time analysis of latent fingerprints of samples. The study is important as it has been observed that there are specific differences in the elemental compositions of coins that are not mentioned by the RBI. The study could also be used as a reference document for identifying and avoiding the circulation of counterfeit coins. Concentrations of constituents present in these coins have been determined by the calibration-free LIBS method. Furthermore, the current report employs appropriate statistical methods like principal component analysis and partial least square regression for the interpretation of complex data obtained from LIBS experiments, both qualitatively and quantitatively. These methods yield remarkable accuracy and are proven to be sufficiently robust.

About the Authors

S. Awasthi
M. M. Mahila College at V. K. S. University
India

Ara



R. Kumar
C. M. P. College at University of Allahabad
India

Prayagraj



R. K. Pandey
School of Engineering at University of Petroleum and Energy Studies, Energy Acres
India

Bidholi, Dehradun



A. Kumar Rai
University of Allahabad
India

Prayagraj



References

1. Srinivasan Chinnammai, Economics and Finance, 4, No. 1 (2013).

2. Rajive Kumar, Anita Rani, Ram Mehar Singh, J. Int. Sci. Technol., 2, No. 1, 1–4 (2014).

3. M. Fayze-Hassan, W. A. Ghaly, H. T. Mohsen, Proc. 8th Conf. Nuclear and Particle Physics, 183–189 (2011).

4. M. Hajivaliei, F. K. Nadooshan, Nucl. Instr. Meth. B, 289, 56–58 (2012).

5. P. K. Nayak, T. R. Rautray, V. Vijayan, Ind. J. Pure Appl. Phys., 42, 319–322 (2004).

6. A. C. Mandal, J. Phys. Sci., 19, 103–107 (2014).

7. C. Andalo, M. Bicchieri, P. Bocchini, G. Casu, G. C. Galetti, P. A. Mando, M. Nardone, A. Sodo, M. P. Zappala, Anal. Chim. Acta, 429, 279–286 (2001).

8. T. Cechak, J. Gerndt, M. Kubelik, L. Musilek, M. Pavlik, Appl. Radiat. Isot., 53, No. 4-5, 565–570 (2000).

9. Y. Haruyama, M. Saito, T. Muneda, M. Mitai, R. Yamamoto, K. Yoshida., Int. J. PIXE, 9, No. 3-4, 181–188 (1999).

10. B. B. Tripathy, T. R. Rautray, R. Satya Das, R. Manas Das, V. Vijayan, Int. J. PIXE, 19, No. 3-4, 167–173 (2009).

11. S. Awasthi, R. Kumar, A. K. Rai, J. Appl. Spectr., 84, No. 5, 811–815 (2017).

12. Ashok Kumar Pathak, Rohit Kumar, Vivek Kumar Singh, Rahul Agrawal, Shikha Rai, Awadhesh Kumar Rai, Appl. Spectrosc. Rev., 47, No. 1, 14–40 (2012).

13. R. Kumar, A. Devanathan, N. L. Mishra, A. K. Rai, J. Appl. Spectr., 86, 942–947 (2019).

14. J. A. Aguilera, C. Aragón, G. Cristoforetti, E. Tognoni, Spectrochim. Acta B, 64, 685–689 (2009).

15. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, Appl. Spectrosc., 53, No. 8, 960–964 (1999).

16. Rohit Kumar, Awadhesh K. Rai, Devanathan Alamelu, Suresh K. Aggarwal, Environ. Monitor. Assess, 185, 171–180 (2013).

17. V. C. Costa, S. dos Santos Ferreira, L. N. Santos, M. A. Sperança, C. Santos da Silva, G. A. Sodré, E. R. Pereira-Filho, J. Appl. Spectr., 87, 378–386 (2020).

18. Spizzichino Valeria, Fantoni Roberta, Spectrochim. Acta B, 99, 201–209 (2014).

19. Shikha Awasthi, Rohit Kumar, G. K. Rai, A. K. Rai, Opt. Laser Eng., 79, 29–38 (2016).

20. Shanshan Qiu, Liping Gao, Jun Wang, J. Food Eng., 144, 77–85 (2015).

21. T. F. Boucher, M. V. Ozanne, M. L. Carmosino, M. Darby Dyar, S. Mahadevan, E. A. Breves, K. H. Lepore, S. M. Clegg, Spectrochim. Acta B, 107, 1–10 (2015).

22. Manjeet Singh, Arnab Sarkar, J. Appl. Spectr., 85, 962–970 (2018).

23. G. S. Senesi, R. A. Romano, B. S. Marangoni, G. Nicolodelli, P. R. Villas-Boas, V. M. Benites, D. M. B. P. Milori, J. Appl. Spectr., 84, 923–928 (2017).

24. Shikha Awasthi, Rohit Kumar, Alamelu Devanathan, R. Acharya, A. K. Rai, Anal. Chem. Res., 12, 10–16 (2017).

25. Taoreed O. Owolabi, Mohammed A. Gondal, Anal. Chim. Acta, 1030, 33–41 (2018).

26. National Institute of Standards and Technology, Electronic database; http://physics.nist.gov/PhysRefData/ASD/lines form.html.

27. W. R. Brode, Chemical Spectroscopy, Wiley, New York (1958).

28. H. R. Bakhsheshi-Rad, M. H. Idris, M. R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, E. Hamzah, Mater. Design, 53, 283–292 (2014).

29. H. Kankaanpää, H. Pöntinen, A. S. Korhonen, Mater. Sci. Technol., 3, No. 2, 155–158 (1987).

30. R. Agrawal et al., Food Biophys., 6, 527–533 (2011).

31. Gulab S. Maurya et al., J. Nucl. Mater., 444, 23–29 (2014).

32. J. P. Singh, S. N. Thakur, Laser-Induced Breakdown Spectroscopy, First ed., Elsevier (2007).

33. A. W. Mziolek, V. Palleschi, I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications, Cambridge University Press, 122–170 (2006).

34. A. H. Galmed, M. A. Harith, Appl. Phys. B, Laser and Opt., 91, 651–660 (2008).

35. H. R. Griem, Plasma Spectroscopy, McGraw-Hill, New York (1964).


Review

For citations:


Awasthi S., Kumar R., Pandey R.K., Kumar Rai A. New Insights on Modern Age Coins by Calibration-Free Laser-Induced Breakdown Spectroscopy Method and Chemometric Approaches. Zhurnal Prikladnoii Spektroskopii. 2022;89(4):595.

Views: 177


ISSN 0514-7506 (Print)