Differentiation of Plastics by Combining Raman Spectroscopy and Machine Learning
Abstract
We combined Raman spectroscopy with machine learning for the classification of 11 plastic samples. A confocal Raman system with an excitation wavelength of 532 nm was used to collect the Raman spectral data of plastic samples and principal component analysis was used for feature extraction. The prediction models of plastic classification based on three machine learning algorithms are compared. The results show that all three machine learning algorithms are able to classify 11 plastics well. This indicates that the combination of Raman spectroscopy and machine learning has great potential in the rapid and nondestructive classification of plastics.
Keywords
About the Authors
Y. YangChina
Lanzhou, Gansu
W. Zhang
China
Lanzhou, Gansu
Zh. Wang
China
Lanzhou, Gansu
Y. Li
China
Lanzhou, Gansu
References
1. A. L. Andrady, M. A. Neal, Philos. Trans. Roy. Soc. B, 364, 1977–1984 (2009).
2. R. C. Thompson, S. H. Swan, C. J. Moore, et al., Philos. Trans. Roy. Soc. B, 364, 1973–1976 (2009).
3. R. Geyer, J. R. Jambeck, K. L. Law, Sci. Adv., 3, No. 7, e1700782 (2017).
4. ICIS, Chemical, Business, Plastics Europe (2019).
5. D. K. Barnes, F. Galgani, R. C. Thompson, et al., Philos. Trans. Roy. Soc. B, 364, 1985–1998 (2009).
6. C. M. Rochman, M. A. Browne, B. S. Halpern, et al., Nature, 494, 169–171 (2013).
7. S. Gregoire, M. Boudinet, F. Pelascini, et al., Anal. Bioanal. Chem., 400, 3331–3340 (2011).
8. Y. V. Vazquez, S. E. Barbosa, Waste Manage, 53, 196–203 (2016).
9. Q. Wang, X. Wu, L. Chen, et al., Appl. Spectrosc., 71, No. 11, 2538–2548 (2017).
10. S. Pongstabodee, N. Kunachitpimol, S. Damronglerd, Waste Manage, 28, No. 3, 475–483 (2008).
11. R. Leitner, H. Mairer, A. Kercek, Real-Time Imag., 9, No. 4, 245–251 (2003).
12. Q. Zhao, M. Chen, Anal. Lett., 48, No. 2, 301–307 (2014).
13. Y. Yu, L. B. Guo, Z. Q. Hao, et al., Opt. Express, 22, No. 4, 3895–3901 (2014).
14. R. Lenz, K. Enders, C. A. Stedmon, et al., Mar. Poll. Bull., 100, No. 1, 82–91 (2015).
15. B. K. Chabuka, J. H. Kalivas, Appl. Spectrosc., 74, No. 9, 1167–1183 (2020).
16. V. K. Unnikrishnan, K. S. Choudhari, S. D. Kulkarni, et al., RSC Adv., 3, 48 (2013).
17. E. Tognoni, G. Cristoforetti, Opt. Laser Technol., 79, 164–172 (2016).
18. Y. Xi, Y. Li, Z. Duan, et al., Appl. Spectrosc., 72, No. 12, 1752–1763 (2018).
19. J. Wang, K. Liu, S. Jin, et al., Appl. Spectrosc., 74, No. 2, 130–159 (2020).
20. W. Cowger, A. Gray, S. H. Christiansen, et al., Appl. Spectrosc., 74, No. 9, 989–1010 (2020).
21. H. S. Chen, Plast. Sci. Technol., 40, No.6, 69–72 (2012).
22. V. Allen, J. H. Kalivas, R. G. Rodriguez, Appl. Spectrosc., 53, No. 6, 672–681 (1999).
23. A. Tsuchida, H. Kawazumi, A. Kazuyoshi, et al., In: Sensors, IEEE Christchurch, New Zealand, October 25–28, 2009, 1473–1476 (2009).
24. I. T. Jolliffe, J. Cadima, Philos. Trans. Roy. Soc. A, 374, 20150202 (2016).
25. D. M. Camacho, K. M. Collins, R. K. Powers, et al., Cell, 173, No. 7, 1581–1592 (2018).
26. C. Berghian-Grosan, D. A. Magdas, Talanta, 218 (2020).
27. Y. Li, R. Shen, H. Wu, et al., Spectrochim. Acta A, 225, 117483 (2020).
28. R. W. Kennard, L. A. Stone, Technometrics, 11, No. 1, 137–148 (1969).
29. I. M. Nolasco Perez, A. T. Badaro, S. J. Barbon, et al., Appl. Spectrosc., 72, No. 12, 1774–1780 (2018).
30. A. L. Boulesteix, S. Janitza, J. Kruppa, et al., Wires Data Min. Knowl., 2, No. 6, 493–507 (2012).
31. Y. Yu, Y. Lin, C. Xu, et al., Biomed. Opt. Express, 9, No. 12, 6053–6066 (2018).
32. D. Wang, J. Jiang, J. Mo, et al., Appl. Spectrosc., 74, No. 6, 674–683 (2020).
33. C. C. Chang, C. J. Lin, ACM Trans. Intell. Syst. Technol., 2, No. 3, 1–27 (2011).
34. N. M. Nawi, R. S. Ransing, M. N. B. M. Salleh, et al., In: Proc. Database Theory and Application, BioScience and Bio-Technology, Jeju Island, South Korea, December 13–15, 177–188 (2010).
Review
For citations:
Yang Y., Zhang W., Wang Zh., Li Y. Differentiation of Plastics by Combining Raman Spectroscopy and Machine Learning. Zhurnal Prikladnoii Spektroskopii. 2022;89(4):596.