PHOTOPHYSICAL PROPERTIES OF INDOTRICARBOCYANINE DYES DURING COMPLEXATION WITH SERUM ALBUMIN
https://doi.org/10.47612/0514-7506-2022-89-5-605-613
Abstract
The photophysical properties of indotricarbocyanine dyes upon complexation with serum albumin have been studied, and the technique for controlling their formation using electrophoresis has been optimized. In connection with the degradation of dye molecules under the action of acids, the search for the area of localization of the dye under study on the surface of the gel plate was carried out by recording the fluorescence spectra of the dye before protein fixation and visualization followed by the completion of the protocol for obtaining electrophoregrams. To minimize the possible influence of the luminescence of the gel components, the excitation was carried out by the radiation of a semiconductor laser with a wavelength of 684 nm, which initiates the fluorescence of the studied dyes. It was established that the position of the maxima and the half-width of the fluorescence spectra of dyes with an orthophenylene bridge in the conjugation chain in the regions of the electropherogram corresponding to the localization of albumin coincide with the characteristics of the emission of dyes in initial solutions with albumin, which makes it possible to reveal the formation of covalently bound complexes of dye molecules with albumin.
About the Authors
D. S. TarasovBelarus
Minsk
M. P. Samtsov
Belarus
Minsk
I. I. Khludeyev
Belarus
Minsk
E. V. Maliushkova
Belarus
Minsk
I. V. Semak
Belarus
Minsk
References
1. D. M. Dereje, C. Pontremoli, M. J. Moran Plata, S. Visentin, N. Barbero. Photochem. Photobiol. Sci., 21 (2022) 397—419, https://doi.org/10.1007/s43630-022-00175-6
2. N. Lange, W. Szlasa, J. Saczko, A. Chwiłkowska. Pharmaceutics, 13, N 6 (2021) 818, https://doi.org/10.3390/pharmaceutics13060818
3. A. A. Ishchenko. Russ. Chem. Rev., 60, N 8 (1991) 865—884, https://doi.org/10.1070/RC1991v060n08ABEH001116
4. L. Beverina, P. Salice. Eur. J. Org. Chem., N 7 (2010) 1207—1225, https://doi.org/10.1002/ejoc.200901297
5. L. Beverina, M. Sassi. Synlett, 25, N 4 (2014) 477—490, https://doi.org/10.1055/s-0033-1340482
6. L. Stackova, E. Muchova, M. Russo, P. Slavicek, P. Stacko, P. Klan. J. Org. Chem., 85, N 15 (2020) 9776—9790, https://doi.org/10.1021/acs.joc.0c01104
7. M. P. Samtsov, E. S. Voropay, L. S. Liashenka, D. G. Melnikau, K. N. Kapleusky, A. P. Lugovskij. J. Appl. Spectr., 78, N 1 (2011) 110—116, https://doi.org/10.1007/s10812-011-9432-y
8. E. S. Voropay, M. P. Samtsov, A. P. Lugovsky, E. A. Zhavrid, E. N. Alexandrova, Yu. P. Istomun, I. N. Zhuravkin. Exp. Oncol., 19 (1997) 56―60
9. Y. P. Istomin, E. N. Alexandrova, E. A. Zhavrid, E. S. Voropay, M. P. Samtsov, K. N. Kaplevsky, A. P. Lugovsky, A.A. Lugovsky. Exp. Oncol., 28, N 1 (2006) 80—82, https://exponcology.com.ua/article/655/the-effect-of-hypoxia-on-photocytotoxicity-of-tics-tricarbocyanine-dye-in-vitro
10. A. А. Lugovski, M. P. Samtsov, K. N. Kaplevsky, D. S. Tarasau, E. S. Voropay, P. T. Petrov, Y. P. Istomin. J. Photochem. Photobiol. A: Chem., 316 (2016) 31—36, https://doi.org/10.1016/j.jphotochem.2015.10.008
11. J. Atchison, S. Kamila, H. Nesbitt, K. A. Logan, D. M. Nicholas, C. Fowley, J. Davis, B. Callan, A. P. McHale, J. F. Callan. Chem. Commun., 53, N 12 (2017) 2009—2012, https://doi.org/10.1039/C6CC09624G
12. M. P. Samtsov, E. S. Voropay, K. N. Kaplevsky, D. G. Melnikau, L. S. Lyashenko, Y. P. Istomin. J. Appl. Spectr., 76, N 4 (2009) 547—553, https://doi.org/10.1007/s10812-009-9223-x
13. M. P. Samtsov, E. S. Voropai, D. G. Mel’nikov, L. S. Lyashenko, A. A. Lugovskii, Y. P. Istomin. J. Appl. Spectr., 77, N 3 (2010) 406—412, https://doi.org/10.1007/s10812-010-9346-0
14. Н. В. Белько, М. П. Самцов, Д. С. Тарасов. Журн. Бел. гос. ун-та. Физика, № 3 (2020) 17—23, https://doi.org/10.33581/2520-2243-2020-3-17-23
15. М. П. Самцов, Д. С. Тарасов, А. П. Луговский, П. Т. Петров, А. О. Савин, Р. Д. Зильберман, Е. С. Воропай. Докл. БГУИР, 18, № 8 (2020) 5—13; https://doi.org/10.35596/1729-7648-2020-18-8-5-13
16. U. Chilakamarthi, L. Giribabu. Chem. Rec., 17, N 8 (2017) 775—802, https://doi.org/10.1002/tcr.201600121
17. N. V. Kudinova, T. T. Berezov. Biochem. (Moscow) Suppl. Ser. B: Biomed. Chem., 4, N 1 (2010) 95—103, https://doi.org/10.1134/S1990750810010129
18. A. Loureiro, N. G. Azoia, A. C. Gomes, A. Cavaco-Paulo. Current Pharm. Design, 22, N 10 (2016) 1371—1390, https://doi.org/10.2174/1381612822666160125114900
19. H. Jeong, M. Huh, S. J. Lee, H. Koo, I. C. Kwon, S. Y. Jeong, K. Kim. Theranostics, 1 (2011) 230—239, https://doi.org/10.7150%2Fthno%2Fv01p0230
20. B. Bhushan, V. Khanadeev, B. Khlebtsov, N. Khlebtsov, P. Gopinath. Adv. Coll. Interface Sci., 246 (2017) 13—39, https://doi.org/10.1016/j.cis.2017.06.012
21. C. Zhu, Y. Xia. Chem. Soc. Rev., 46, N 24 (2017) 7668—7682, https://doi.org/10.1039/C7CS00492C
22. Н. В. Белько, И. И. Хлудеев, В. П. Зорин, М. П. Самцов. Весцi БДПУ. Сер. 3. Фізіка. Матэматыка. Інфарматыка. Біялогія. Геаграфія, 1 (2018) 14—20, https://elibrary.ru/item.asp?id=37154997
23. H. Chen, A. Ji, S. Qiu, Y. Liu, Q. Zhu, L. Yin. Food Hydrocoll., 76 (2018) 173—183, https://doi.org/10.1016/j.foodhyd.2016.12.004
24. M. Kasran, S. W. Cui, H. D. Goff. Food Hydrocoll., 30, N 2 (2013) 552—558, https://doi.org/10.1016/j.foodhyd.2012.08.004
25. M. Li, H. Li, P. De, B. S. Sumerlin. Macromol. Rap. Commun., 32, N 4 (2011) 354—359, https://doi.org/10.1002/marc.201000619
26. S. M. Usama, C. M. Lin, K. Burgess. Bioconjugate Chem., 29, N 11 (2018) 3886—3895, https://doi.org/10.1021/acs.bioconjchem.8b00708
27. K. Manokruang, J. S. Lym, D. S. Lee. Mater. Lett., 124 (2014) 105—109, https://doi.org/10.1016/j.matlet.2014.03.052
28. K. Wilson, J. Walker. Principles and Techniques of Biochemistry and Molecular Biology, Cambridge University Press (2018) 219—252
29. W. F. Patton. Electrophoresis: An Int. J., 21, N 6 (2000) 1123—1144, https://doi.org/10.1002/(SICI)1522-2683(20000401)21:6%3C1123::AID-ELPS1123%3E3.0.CO;2-E
30. L. Gao, R. T. Smith. J. Biophoton., 8, N 6 (2015) 441—456, https://doi.org/10.1002/jbio.201400051
31. М. П. Самцов, А. Е. Радько, К. Н. Каплевский, К. А. Шевченко. Квантовая электроника: материалы V междунар. науч.-техн. конф., Минск, 22—25 ноября 2004 г., Минск, БГУ (2004) 20—24
32. U. K. Laemmli. Nature, 227, N 5259 (1970) 680—685
33. B. D. Hames. Gel Electrophoresis of Proteins: Practical Approach, OUP Oxford (1998) 1—352
34. S. F. S. Groth, R. G. Webster, A. Datyner. Biochim. Biophys. Acta, 71 (1963) 377—391, https://doi.org/10.1016/0006-3002(63)91092-8
35. S. Luo, N. B. Wehr, R. L. Levine. Anal. Biochem., 350, N 2 (2006) 233—238, https://doi.org/10.1016/j.ab.2005.10.048
36. Н. В. Белько, М. П. Самцов, А. П. Луговский. Журн. Бел. гос. ун-та. Физика, 2 (2020) 19—27, https://doi.org/10.33581/2520-2243-2020-2-19-27
37. Д. С. Тарасов, К. Н. Каплевский, М. П.Самцов, Е. С. Воропай. Вестн. БГУ, Сер. 1, № 2 (2015) 8—12
Review
For citations:
Tarasov D.S., Samtsov M.P., Khludeyev I.I., Maliushkova E.V., Semak I.V. PHOTOPHYSICAL PROPERTIES OF INDOTRICARBOCYANINE DYES DURING COMPLEXATION WITH SERUM ALBUMIN. Zhurnal Prikladnoii Spektroskopii. 2022;89(5):605-613. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-5-605-613