Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

RAMAN SPECTRА OF SILICON/GERMANIUM ALLOY THIN FILMS BASED ON POROUS SILICON

https://doi.org/10.47612/0514-7506-2022-89-5-614-620

Abstract

The regularities of composition changes of silicon/germanium alloy thin films formed on a monocrystalline silicon substrate by electrochemical deposition of germanium into a porous silicon matrix with subsequent rapid thermal annealing (RTA) at a temperature of 750–950°C are studied. An analysis of the samples by Raman spectroscopy showed that an increase of RTA temperature leads to a decrease in the germanium concentration in the formed film. A decrease of the RTA duration at a given temperature makes it possible to obtain films with a higher concentration of germanium and to control the composition of thin silicon/germanium alloy films formed by changing the temperature and duration of RTA. The obtained results on controlling the composition of silicon/germanium alloy films can be used to create functional electronic devices, thermoelectric power converters, and optoelectronic devices.

About the Authors

E. B. Chubenko
Belarusian State University of Informatics and Radioelectronics
Belarus

Minsk



N. L. Grevtsov
Belarusian State University of Informatics and Radioelectronics
Belarus

Minsk



V. P. Bondarenko
Belarusian State University of Informatics and Radioelectronics
Belarus

Minsk



I. M. Gavrilin
National Research University of Electronic Technology – MIET
Russian Federation

Moscow



A. V. Pavlikov
National Research University of Electronic Technology – MIET
Russian Federation

Moscow



A. A. Dronov
National Research University of Electronic Technology – MIET
Russian Federation

Moscow



L. S. Volkova
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences
Russian Federation

Moscow



S. A. Gavrilov
National Research University of Electronic Technology – MIET
Russian Federation

Moscow



References

1. Y. Shiraki, N. Usami. Silicon–Germanium (SiGe) Nanostructures: Production, Properties and Applications in Electronics, Cambridge, Woodhead Publishing (2011) 3—25

2. L. Vegard. Z. Physik, 5 (1920) 17—26

3. J. P. Dismukes, L. Ekstrom, R. J. Pfaff. J. Phys. Chem., 68 (1964) 3021—3027

4. N. M. Ravindra, B. Jariwala, A. Bañobre, A. Maske. Thermoelectrics: Fundamentals, Materials Selection, Properties, and Performance, Cham, Springer (2019) 49—67

5. V. I. Talanin. New Research on Silicon — Structure, Properties, Technology, London, IntechOpen (2017) 84—101

6. D. Benedikovic, L. Virot, G. Aubin, J.-M. Hartmann, F. Amar, X. Le Roux, C. Alonso-Ramos, E. Cassan, D. Marris-Morini, J.-M. Fédéli, F. Boeuf, B. Szelag, L. Vivien. Nanophotonics, 10 (2021) 1059—1079

7. X. Zhang, L.-D. Zhao. J. Materiomics, 1 (2015) 92—105

8. I. M. Gavrilin, N. L. Grevtsov, A. V. Pavlikov, A. A. Dronov, E. B. Chubenko, V. P. Bondarenko, S. A. Gavrilov. Mater. Lett., 313 (2022) 131802

9. E. Fahrenkrug, J. Biehl, S. Maldonado. Chem. Mater., 27 (2015) 3389—3396

10. I. M. Gavrilin, D. G. Gromov, A. A. Dronov, S. V. Dubkov, R. L. Volkov, A. Yu. Trifonov, N. I. Borgardt, S. A. Gavrilov. Semicond., 51 (2017) 1067—1071

11. S. Acharya, L. Ma, S. Maldonado. ACS Appl. Nano Mater., 1 (2018) 5553—5561

12. Q. Cheek, E. Fahrenkrug, S. Hlynchuk, D. H. Alsem, N. J. Salmon, S. Maldonado. ACS Nano, 14 (2020) 2869—2879

13. R. Schwarz, F. Heinrich, E. Hollstein. Z. Anorg. Allgem. Chem., 229 (1936) 146

14. C. G. Fink, V. M. Dokras. J. Electrochem. Soc., 95 (1949) 80—97

15. N. Brinda-Konopik, G. Schade. Electrochim. Acta, 25 (1980) 697—701

16. R. K. Pandey, S. N. Sahu, S. Chandra. Handbook of Semiconductor Deposition, New York, Marcel Dekker Inc. (1996) 201—203

17. N. Chandrasekharan, S. C. Sevov. J. Electrochem. Soc., 157 (2010) C140—C145

18. L. K. van Vugt, A. F. van Driel, R. W. Tjerkstra, L. Bechger, W. L. Vos, D. Vanmaekelbergh, J. J. Kelly. Chem. Commun., 2002 (2002) 2054—2055

19. E. B. Chubenko, S. V. Redko, A. I. Sherstnyov, V. A. Petrovich, D. A. Kotov, V. P. Bondarenko. Semicond., 50 (2016) 372—376

20. K.-H. Li, C. Tsai, S. Shih, T. Hsu, D. L. Kwong, J. C. Campbell. J. Appl. Phys., 72 (1992) 3816—3817

21. I. P. Herman. Optical Diagnostics for Thin Film Processing, San Diego, Academic Press (1996) 559—590

22. J. H. Parker, D. W. Feldman, M. Ashkin. Phys. Rev., 155 (1967) 712—714

23. A. Shklyaev, V. A. Volodin, M. Stoffel, H. Rinnert, M. Vergnat. J. Appl. Phys., 123 (2018) 015304

24. M. I. Alonso, K. Winer. Phys. Rev. B, 39 (1989) 10056—10062

25. P. M. Mooney, F. H. Dacol, J. C. Tsang, J. O. Chu. Appl. Phys. Lett., 62 (1993) 2069—2071

26. F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Känel, E. Wintersberger, J. Stangl, G. Bauer. Mater. Sci. Semicond. Proc., 11 (2008) 279—284

27. V. I. Korepanov, D. M. Sedlovets. Analyst., 143 (2018) 2674—2679

28. Y. Gao, P. Yin. Sci. Rep., 7 (2017) 43602

29. S. A. Mala, L. Tsybeskov, D. J. Lockwood, X. Wu, J.-M. Baribeau. J. Appl. Phys., 116 (2014) 014305


Review

For citations:


Chubenko E.B., Grevtsov N.L., Bondarenko V.P., Gavrilin I.M., Pavlikov A.V., Dronov A.A., Volkova L.S., Gavrilov S.A. RAMAN SPECTRА OF SILICON/GERMANIUM ALLOY THIN FILMS BASED ON POROUS SILICON. Zhurnal Prikladnoii Spektroskopii. 2022;89(5):614-620. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-5-614-620

Views: 248


ISSN 0514-7506 (Print)