Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

TUNABLE REFRACTIVE INDEX SENSOR MADE USING GRAPHENE WITH A HIGH FIGURE OF MERIT

Abstract

Plasmonic effects can be used in high sensitivity sensors, which have attracted widespread attention. However, most of the previously reported refractive index sensors can no longer be adjusted once fabricated, and their figure of merit (FOM) is undesirable. Concerning this, we propose a refractive index sensor consisting of a graphene waveguide and a graphene elliptical cavity working in the mid-infrared range. Its performance can be adjusted in real time by applying a bias voltage to the graphene patterns. The sensitivity of the proposed sensor can reach 2850/refractive index unit and FOM up to 633, respectively. Owing to its excellent sensing properties of high sensitivity and high FOM, the proposed sensor can be applied in gas sensing.

About the Authors

Z. Wang
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering at China Jiliang University
China

Zhen Wang

Hangzhou



X. Li
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering at China Jiliang University
China

Xia Li

Hangzhou



H. Lin
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering at China Jiliang University
China

Hongya Lin

Hangzhou



D. Yang
Tourism College of Zhejiang
China

Dongxu Yang

Hangzhou



Y. Wang
Tourism College of Zhejiang
China

Yinqiu Wang

Hangzhou



S. Lu
Zhejiang University of Water Resources and Electric Power
China

Saiqun Lu

Hangzhou



B. Xiao
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering at China Jiliang University
China

Binggang Xiao

Hangzhou



References

1. F. H. L. Koppens, D. E. Chang, G. D. A. F. Javier, Nano Lett., 11, No. 8, 3370 (2011).

2. A. S. Rodin, Z. Fei, A. S. Mcleod, et al., Physics (2016).

3. L. Ju, B. Geng, J. Horng, et al., Nature Nanotech., 6, No. 10, 630 (2011).

4. D. B. Farmer, D. Rodrigo, T. Low, et al., Nano Lett., 15, No. 4, 2582–2587 (2015).

5. P. Li, T. Wang, H. Böckmann, et al., Nano Lett., 14, No. 8, 4400 (2014).

6. B. Vasić, G. Isić, R. Gajić, J. Appl. Phys., 113, No. 1, 21556 (2013).

7. Y. Li, H. Yan, D. B. Farmer, et al. Nano Lett., 14, No. 3, 1573 (2014).

8. W. Wei, J. Nong, Y. Zhu, et al., Opt. Commun. (2016).

9. J. N. Anker, W. P. Hall, O. Lyandres, et al., Nanosci. Technol.: A Collection Rev. from Nature J., 308–319 (2010).

10. L. A. Falkovsky, Phys. Usp., 51, No. 9, 887–897 (2008).

11. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer Science & Business Media (2007).

12. V. G. Kravets, R. Jalil, Y. J. Kim, et al., Sci. Reports, 4, 5517 (2014).

13. O. Salihoglu, S. Balci, C. Kocabas, Appl. Phys. Lett., 100, No. 21, 213110 (2012).

14. P. R. Griffiths, J. A. D. Haseth, Fourier Transform Infrared Spectrometry, 2nd Ed., Proteomics (2007).

15. D. Rodrigo, O. Limaj, D. Janner, et al., Mid-Infrared Plasmonic Biosensing with Graphene. Science, 349 (6244), 165–168 (2015).

16. J. Homola, S. S. Yee, G. Gauglitz, Sens. Actuat. B: Chem., 54, No. 1–2, 3–15 (1999).

17. S. Law, V. Podolskiy, D. Wasserman, Nanophotonics, 2, No. 2, 103–130 (2013).

18. J. M. Bingham, J. N. Anker, L. E. Kreno, et al., J. Am. Chem. Soc., 132, No. 49, 17358–17359 (2010).

19. M. W. Sigrist, R. Bartlome, D. Marinov, et al., Appl. Phys. B, 90, No. 2, 289–300 (2008).

20. X. Yan, T. Wang, X. Han, et al., Plasmonics, 1–7 (2016).

21. T. Wenger, G. Viola, J. Kinaret, et al., Materials, 4, No. 2 (2017).

22. R. E. Peale, J. W. Cleary, W. R. Buchwald, et al., Proc. SPIE, The Int. Soc. Opt. Eng., 767306 (95), 730–734 (2010).

23. B. Wang, G. P. Wang, Appl. Phys. Lett., 87, No. 1, 013107(1–3) (2005).

24. L. A. Falkovsky, J. Exp. Theor. Phys., 106, No. 3, 575–580 (2008).

25. B. Ruan, Q. You, J. Zhu, et al., IEEE Sensors J., 18, 7436–7441 (2018).

26. D. Wu, J. Tian, L. Li, et al., Opt. Commun., 412, 41–48 (2018).

27. G. W. Hanson, J. Appl. Phys., 103, No. 6, 064302 (2008).

28. A. Moreau, C. Ciracì, et al., Nature, 492(7427), 86–89 (2012).

29. B. Zhu, G. Ren, S. Zheng, et al., Opt. Express, 21, No. 14, 17089–17096 (2013).

30. X. Wang, T. He, M. A. Mohammad, et al., Nat. Commun., 6, Article No. 7767 (2015).

31. D. Yadav, S. B. Tombet, T. Watanabe, et al., Materials, 3, No. 4, 045009 (2016).

32. X. Binggang, T. Shengjun, A. Fyffe, Z. Shi, Opt. Express, 28, 4048–4057 (2020).

33. Y. Zhang, M. Cui, J. Electron. Mater., 48, No. 2, 1005–1010 (2019).


Review

For citations:


Wang Z., Li X., Lin H., Yang D., Wang Y., Lu S., Xiao B. TUNABLE REFRACTIVE INDEX SENSOR MADE USING GRAPHENE WITH A HIGH FIGURE OF MERIT. Zhurnal Prikladnoii Spektroskopii. 2022;89(5):719-725.

Views: 107


ISSN 0514-7506 (Print)