TUNABLE REFRACTIVE INDEX SENSOR MADE USING GRAPHENE WITH A HIGH FIGURE OF MERIT
Abstract
Plasmonic effects can be used in high sensitivity sensors, which have attracted widespread attention. However, most of the previously reported refractive index sensors can no longer be adjusted once fabricated, and their figure of merit (FOM) is undesirable. Concerning this, we propose a refractive index sensor consisting of a graphene waveguide and a graphene elliptical cavity working in the mid-infrared range. Its performance can be adjusted in real time by applying a bias voltage to the graphene patterns. The sensitivity of the proposed sensor can reach 2850/refractive index unit and FOM up to 633, respectively. Owing to its excellent sensing properties of high sensitivity and high FOM, the proposed sensor can be applied in gas sensing.
About the Authors
Z. WangChina
Zhen Wang
Hangzhou
X. Li
China
Xia Li
Hangzhou
H. Lin
China
Hongya Lin
Hangzhou
D. Yang
China
Dongxu Yang
Hangzhou
Y. Wang
China
Yinqiu Wang
Hangzhou
S. Lu
China
Saiqun Lu
Hangzhou
B. Xiao
China
Binggang Xiao
Hangzhou
References
1. F. H. L. Koppens, D. E. Chang, G. D. A. F. Javier, Nano Lett., 11, No. 8, 3370 (2011).
2. A. S. Rodin, Z. Fei, A. S. Mcleod, et al., Physics (2016).
3. L. Ju, B. Geng, J. Horng, et al., Nature Nanotech., 6, No. 10, 630 (2011).
4. D. B. Farmer, D. Rodrigo, T. Low, et al., Nano Lett., 15, No. 4, 2582–2587 (2015).
5. P. Li, T. Wang, H. Böckmann, et al., Nano Lett., 14, No. 8, 4400 (2014).
6. B. Vasić, G. Isić, R. Gajić, J. Appl. Phys., 113, No. 1, 21556 (2013).
7. Y. Li, H. Yan, D. B. Farmer, et al. Nano Lett., 14, No. 3, 1573 (2014).
8. W. Wei, J. Nong, Y. Zhu, et al., Opt. Commun. (2016).
9. J. N. Anker, W. P. Hall, O. Lyandres, et al., Nanosci. Technol.: A Collection Rev. from Nature J., 308–319 (2010).
10. L. A. Falkovsky, Phys. Usp., 51, No. 9, 887–897 (2008).
11. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer Science & Business Media (2007).
12. V. G. Kravets, R. Jalil, Y. J. Kim, et al., Sci. Reports, 4, 5517 (2014).
13. O. Salihoglu, S. Balci, C. Kocabas, Appl. Phys. Lett., 100, No. 21, 213110 (2012).
14. P. R. Griffiths, J. A. D. Haseth, Fourier Transform Infrared Spectrometry, 2nd Ed., Proteomics (2007).
15. D. Rodrigo, O. Limaj, D. Janner, et al., Mid-Infrared Plasmonic Biosensing with Graphene. Science, 349 (6244), 165–168 (2015).
16. J. Homola, S. S. Yee, G. Gauglitz, Sens. Actuat. B: Chem., 54, No. 1–2, 3–15 (1999).
17. S. Law, V. Podolskiy, D. Wasserman, Nanophotonics, 2, No. 2, 103–130 (2013).
18. J. M. Bingham, J. N. Anker, L. E. Kreno, et al., J. Am. Chem. Soc., 132, No. 49, 17358–17359 (2010).
19. M. W. Sigrist, R. Bartlome, D. Marinov, et al., Appl. Phys. B, 90, No. 2, 289–300 (2008).
20. X. Yan, T. Wang, X. Han, et al., Plasmonics, 1–7 (2016).
21. T. Wenger, G. Viola, J. Kinaret, et al., Materials, 4, No. 2 (2017).
22. R. E. Peale, J. W. Cleary, W. R. Buchwald, et al., Proc. SPIE, The Int. Soc. Opt. Eng., 767306 (95), 730–734 (2010).
23. B. Wang, G. P. Wang, Appl. Phys. Lett., 87, No. 1, 013107(1–3) (2005).
24. L. A. Falkovsky, J. Exp. Theor. Phys., 106, No. 3, 575–580 (2008).
25. B. Ruan, Q. You, J. Zhu, et al., IEEE Sensors J., 18, 7436–7441 (2018).
26. D. Wu, J. Tian, L. Li, et al., Opt. Commun., 412, 41–48 (2018).
27. G. W. Hanson, J. Appl. Phys., 103, No. 6, 064302 (2008).
28. A. Moreau, C. Ciracì, et al., Nature, 492(7427), 86–89 (2012).
29. B. Zhu, G. Ren, S. Zheng, et al., Opt. Express, 21, No. 14, 17089–17096 (2013).
30. X. Wang, T. He, M. A. Mohammad, et al., Nat. Commun., 6, Article No. 7767 (2015).
31. D. Yadav, S. B. Tombet, T. Watanabe, et al., Materials, 3, No. 4, 045009 (2016).
32. X. Binggang, T. Shengjun, A. Fyffe, Z. Shi, Opt. Express, 28, 4048–4057 (2020).
33. Y. Zhang, M. Cui, J. Electron. Mater., 48, No. 2, 1005–1010 (2019).
Review
For citations:
Wang Z., Li X., Lin H., Yang D., Wang Y., Lu S., Xiao B. TUNABLE REFRACTIVE INDEX SENSOR MADE USING GRAPHENE WITH A HIGH FIGURE OF MERIT. Zhurnal Prikladnoii Spektroskopii. 2022;89(5):719-725.