Preview

Zhurnal Prikladnoii Spektroskopii

Advanced search
Open Access Open Access  Restricted Access Subscription Access

PRINCIPAL COMPONENT ANALYSIS OF PHOTON COUNTING HISTOGRAMS IN FLUORESCENCE FLUCTUATION SPECTROSCOPY EXPERIMENTS

https://doi.org/10.47612/0514-7506-2022-89-5-726-735

Abstract

An integrated approach based on the use of data mining methods has been proposed to improve the efficiency of the analysis of photon counting histograms in the study of the molecular composition of a substance by the method of fluorescence fluctuation spectroscopy. The method of principal components is used to test the hypothesis about the cluster separability of multidimensional experimental data. The reason for the compression of a point cloud into a characteristic nonlinearity, or so-called arc-shaped cloud, in the space of first two principal components is investigated. Examples of simulated data sets on some selected molecular systems of various brightness and concentration are considered. Nonlinear effects complicate interpretation and subsequent quantitative analysis of data. It has been established that the arching of the data cloud is a consequence of the presence of a significant variation in one or more physical parameters. In particular, it is the result of a significant increase in the variation in the parameters of the brightness or concentration of molecules. These parameters can be as additional measure in assessing the quality of the experiments if only one type of molecule is studied, and also can be used for characterizing the system under study in the case of a mixture of molecules of different types. It is proposed to apply the locally weighted scatterplot smoothing normalization to eliminate the nonlinear effects in the space of principal components.

About the Authors

V. V. Skakun
Belarusian State University
Belarus

Minsk



M. M. Yatskou
Belarusian State University
Belarus

Minsk



L. Nederveen-Schippers
University of Groningen
Netherlands

Groningen



A. Kortholt
University of Groningen
Netherlands

Groningen



V. V. Apanasovich
Belarusian State University
Belarus

Minsk



References

1. E. L. Elson, D. Magde. Biopolymers, 13, N 1 (1974) 1—27, doi:10.1002/BIP.1974.360130102

2. A. Kitamura, M. Kinjo. Int. J. Mol. Sci., 19, N 4 (2018) 964(1—18), doi:10.3390/IJMS19040964

3. M. A. Hink. Protoplasma, 251, N 2 (2014) 307—316, doi:10.1007/S00709-013-0602-Z

4. Y. Chen, J. D. Müller, P. T. C. So, E. Gratton. Biophys. J., 77, N 1 (1999) 553—567, doi:10.1016/S0006-3495(99)76912-2

5. P. Kask, K. Palo, D. Ullmann, K. Gall. Proc. Nat. Acad. Sci. USA, 96, N 24 (1999) 13756—13761, doi:10.1073/PNAS.96.24.13756P

6. B. Huang, T. D. Perroud, R. N. Zare. Chem. Phys. Chem., 5, N 10 (2004) 1523—1531, doi:10.1002/CPHC.200400176

7. T. D. Perroud, B. Huang, R. N. Zare. Chem. Phys. Chem., 6, N 5 (2005) 905—912, doi:10.1002/cphc.200400547

8. K. Palo, Ü. Mets, S. Jäger, P. Kask, K. Gall. Biophys. J., 79, N 6 (2000) 2858—2866, doi:10.1016/S0006-3495(00)76523-4

9. K. Palo, Ü. Mets, V. Loorits, P. Kask. Biophys. J., 90, N 6 (2006) 2179—2191, doi:10.1529/BIOPHYSJ.105.066084

10. V. V. Skakun, R. Engel, A. V. Digris, J. W. Borst, A. J. W. G. Visser. Front Biosci. (Elite Ed.), 3, N 2 (2011) 489—505, doi:10.2741/E264

11. L. M. Nederveen-Schippers, P. Pathak, I. Keizer-Gunnink, A. H. Westphal, P. J. M. van Haastert, J. W. Borst, A. Kortholt, V. V. Skakun. Int. J. Mol. Sci., 22, N 14, 7300 (2021), doi:10.3390/IJMS22147300

12. M. M. Yatskou, V. V. Skakun, L. Nederveen-Schippers, A. Kortholt, V. V. Apanasovich. J. Appl. Spectrosc., 87, N 4 (2020) 685—692, doi:10.1007/S10812-020-01055-6

13. I. T. Jollife, J. Cadima. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, N 2065 (2016), doi:10.1098/RSTA.2015.0202

14. P. Bassan, A. Kohler, H. Martens, J. Lee, H. J. Byrne, P. Dumas, E. Gazi, M. Brown, N. Clarkefgh, P. Gardner. Analyst., 135, N 2 (2010) 268—277, doi:10.1039/B921056C

15. W. S. Cleveland. J. Am. Stat. Ass., 74, N 368 (1979) 829—836

16. P. J. M. van Haastert, I. Keizer-Gunnink, A. Kortholt. J. Cell Biol., 177, N 5 (2007) 809—816, doi:10.1083/JCB.200701134

17. M. M. Yatskou. Data Mining: Manual [in Russ.], BSU, Minsk (2014)

18. I. P. Shingaryov, V. V. Skakun, V. V. Apanasovich. Methods Mol. Biol., 1076 (2014) 743—755, doi:10.1007/978-1-62703-649-8_34

19. J. R. Lakowicz. Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York (2006), doi:10.1007/978-0-387-46312-4

20. M. M. Yatskou. Computer Simulation of Energy Relaxation and Transport in Organized Porphyrin Systems, Wageningen (2001)

21. W. S. Cleveland. The American Statistician, 35, N 1 (1981) 54, doi: 10.2307/2683591

22. V. V. Skakun, A. V. Digris, V. V. Apanasovich. Methods Mol. Biol., 1076 (2014) 719—741, doi:10.1007/978-1-62703-649-8_33


Review

For citations:


Skakun V.V., Yatskou M.M., Nederveen-Schippers L., Kortholt A., Apanasovich V.V. PRINCIPAL COMPONENT ANALYSIS OF PHOTON COUNTING HISTOGRAMS IN FLUORESCENCE FLUCTUATION SPECTROSCOPY EXPERIMENTS. Zhurnal Prikladnoii Spektroskopii. 2022;89(5):726-735. (In Russ.) https://doi.org/10.47612/0514-7506-2022-89-5-726-735

Views: 223


ISSN 0514-7506 (Print)